Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Sure, let's find the first four terms of the arithmetic progression given the details:
Given:
- The arithmetic progression (AP) contains 20 terms.
- The first term ([tex]\( a_1 \)[/tex]) is 2.
- The last term ([tex]\( a_{20} \)[/tex]) is 78.
To find the common difference [tex]\( d \)[/tex] of the AP, we use the formula for the nth term of an arithmetic progression:
[tex]\[ a_n = a_1 + (n-1)d \][/tex]
For the 20th term [tex]\( a_{20} \)[/tex]:
[tex]\[ a_{20} = a_1 + (20-1)d \][/tex]
Substituting the given values:
[tex]\[ 78 = 2 + 19d \][/tex]
Now, solving for [tex]\( d \)[/tex]:
[tex]\[ 78 - 2 = 19d \][/tex]
[tex]\[ 76 = 19d \][/tex]
[tex]\[ d = \frac{76}{19} \][/tex]
[tex]\[ d = 4 \][/tex]
Now we know the common difference [tex]\( d \)[/tex] is 4. We can find the first four terms of the AP.
1. The first term [tex]\( a_1 \)[/tex] is given as 2.
2. The second term [tex]\( a_2 \)[/tex] is computed as:
[tex]\[ a_2 = a_1 + d \][/tex]
[tex]\[ a_2 = 2 + 4 \][/tex]
[tex]\[ a_2 = 6 \][/tex]
3. The third term [tex]\( a_3 \)[/tex] is:
[tex]\[ a_3 = a_1 + 2d \][/tex]
[tex]\[ a_3 = 2 + 2 \cdot 4 \][/tex]
[tex]\[ a_3 = 2 + 8 \][/tex]
[tex]\[ a_3 = 10 \][/tex]
4. The fourth term [tex]\( a_4 \)[/tex] is:
[tex]\[ a_4 = a_1 + 3d \][/tex]
[tex]\[ a_4 = 2 + 3 \cdot 4 \][/tex]
[tex]\[ a_4 = 2 + 12 \][/tex]
[tex]\[ a_4 = 14 \][/tex]
So, the first four terms of the arithmetic progression are:
[tex]\[ 2, 6, 10, 14 \][/tex]
The common difference is 4, and the first four terms of the AP are [tex]\( 2, 6, 10, \)[/tex] and [tex]\( 14 \)[/tex].
Given:
- The arithmetic progression (AP) contains 20 terms.
- The first term ([tex]\( a_1 \)[/tex]) is 2.
- The last term ([tex]\( a_{20} \)[/tex]) is 78.
To find the common difference [tex]\( d \)[/tex] of the AP, we use the formula for the nth term of an arithmetic progression:
[tex]\[ a_n = a_1 + (n-1)d \][/tex]
For the 20th term [tex]\( a_{20} \)[/tex]:
[tex]\[ a_{20} = a_1 + (20-1)d \][/tex]
Substituting the given values:
[tex]\[ 78 = 2 + 19d \][/tex]
Now, solving for [tex]\( d \)[/tex]:
[tex]\[ 78 - 2 = 19d \][/tex]
[tex]\[ 76 = 19d \][/tex]
[tex]\[ d = \frac{76}{19} \][/tex]
[tex]\[ d = 4 \][/tex]
Now we know the common difference [tex]\( d \)[/tex] is 4. We can find the first four terms of the AP.
1. The first term [tex]\( a_1 \)[/tex] is given as 2.
2. The second term [tex]\( a_2 \)[/tex] is computed as:
[tex]\[ a_2 = a_1 + d \][/tex]
[tex]\[ a_2 = 2 + 4 \][/tex]
[tex]\[ a_2 = 6 \][/tex]
3. The third term [tex]\( a_3 \)[/tex] is:
[tex]\[ a_3 = a_1 + 2d \][/tex]
[tex]\[ a_3 = 2 + 2 \cdot 4 \][/tex]
[tex]\[ a_3 = 2 + 8 \][/tex]
[tex]\[ a_3 = 10 \][/tex]
4. The fourth term [tex]\( a_4 \)[/tex] is:
[tex]\[ a_4 = a_1 + 3d \][/tex]
[tex]\[ a_4 = 2 + 3 \cdot 4 \][/tex]
[tex]\[ a_4 = 2 + 12 \][/tex]
[tex]\[ a_4 = 14 \][/tex]
So, the first four terms of the arithmetic progression are:
[tex]\[ 2, 6, 10, 14 \][/tex]
The common difference is 4, and the first four terms of the AP are [tex]\( 2, 6, 10, \)[/tex] and [tex]\( 14 \)[/tex].
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.