Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.

Question 14 of 25

The equation below describes a circle. What are the coordinates of the center of the circle?

[tex]\[ (x-6)^2+(y+5)^2=15^2 \][/tex]

A. [tex]\((-6,-5)\)[/tex]

B. [tex]\((-6,5)\)[/tex]

C. [tex]\((6,5)\)[/tex]

D. [tex]\((6,-5)\)[/tex]


Sagot :

To find the coordinates of the center of the circle given the equation [tex]\((x - 6)^2 + (y + 5)^2 = 15^2\)[/tex], we need to recognize the standard form of a circle's equation. The general form of the equation of a circle is:

[tex]\[ (x - h)^2 + (y - k)^2 = r^2 \][/tex]

Here, [tex]\((h, k)\)[/tex] represents the center of the circle, and [tex]\(r\)[/tex] is the radius.

For the given equation [tex]\((x - 6)^2 + (y + 5)^2 = 15^2\)[/tex], we can identify [tex]\(h\)[/tex] and [tex]\(k\)[/tex] by comparing it with the standard form. Let's break it down:

1. [tex]\((x - 6)^2\)[/tex] corresponds to the term [tex]\((x - h)^2\)[/tex]. Thus, [tex]\(h = 6\)[/tex].
2. [tex]\((y + 5)^2\)[/tex] can be rewritten as [tex]\((y - (-5))^2\)[/tex], which aligns with [tex]\((y - k)^2\)[/tex]. Therefore, [tex]\(k = -5\)[/tex].

From this, we determine that the center of the circle [tex]\((h, k)\)[/tex] is at the coordinates [tex]\((6, -5)\)[/tex].

Hence, the correct answer is:
D. [tex]\((6, -5)\)[/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.