Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Sure, let's solve this problem step-by-step using concepts from chemistry, specifically Graham's law of effusion.
1. Identify the molar masses of the gases:
- The molar mass of hydrogen sulfide [tex]\(\left( H_2S \right)\)[/tex] is 34.08 grams per mole.
- The molar mass of ammonia [tex]\(\left( NH_3 \right)\)[/tex] is 17.03 grams per mole.
2. Apply Graham's law of effusion:
- According to Graham's law, the rate of effusion of a gas is inversely proportional to the square root of its molar mass. The formula is given by:
[tex]\[ \frac{\text{rate}_1}{\text{rate}_2} = \sqrt{\frac{M_2}{M_1}} \][/tex]
where [tex]\(\text{rate}_1\)[/tex] and [tex]\(\text{rate}_2\)[/tex] are the effusion rates of the two gases, and [tex]\(M_1\)[/tex] and [tex]\(M_2\)[/tex] are their molar masses respectively.
3. Set up the comparison of effusion rates:
- To determine which gas effuses faster, we compare the effusion rates of H[tex]\(_2\)[/tex]S and NH[tex]\(_3\)[/tex].
Taking [tex]\(H_2S\)[/tex] as gas 1 and [tex]\(NH_3\)[/tex] as gas 2:
[tex]\[ \frac{\text{rate}_{NH_3}}{\text{rate}_{H_2S}} = \sqrt{\frac{M_{H_2S}}{M_{NH_3}}} \][/tex]
4. Calculate the ratio:
- Plugging in the molar masses:
[tex]\[ \frac{\text{rate}_{NH_3}}{\text{rate}_{H_2S}} = \sqrt{\frac{34.08}{17.03}} \][/tex]
This ratio evaluates to approximately 1.4146.
5. Interpret the ratio:
- The ratio [tex]\(\sqrt{\frac{34.08}{17.03}} \approx 1.4146\)[/tex] tells us that [tex]\(\text{rate}_{NH_3}\)[/tex] is about 1.4146 times the [tex]\(\text{rate}_{H_2S}\)[/tex].
- Since this value is greater than 1, it indicates that ammonia ([tex]\( NH_3 \)[/tex]) effuses faster than hydrogen sulfide ([tex]\( H_2 S \)[/tex]).
6. Conclusion:
- Hence, ammonia ([tex]\(NH_3\)[/tex]) has the higher effusion rate.
Based on these calculations, the correct answer is:
[tex]\[ \boxed{NH_3} \][/tex]
1. Identify the molar masses of the gases:
- The molar mass of hydrogen sulfide [tex]\(\left( H_2S \right)\)[/tex] is 34.08 grams per mole.
- The molar mass of ammonia [tex]\(\left( NH_3 \right)\)[/tex] is 17.03 grams per mole.
2. Apply Graham's law of effusion:
- According to Graham's law, the rate of effusion of a gas is inversely proportional to the square root of its molar mass. The formula is given by:
[tex]\[ \frac{\text{rate}_1}{\text{rate}_2} = \sqrt{\frac{M_2}{M_1}} \][/tex]
where [tex]\(\text{rate}_1\)[/tex] and [tex]\(\text{rate}_2\)[/tex] are the effusion rates of the two gases, and [tex]\(M_1\)[/tex] and [tex]\(M_2\)[/tex] are their molar masses respectively.
3. Set up the comparison of effusion rates:
- To determine which gas effuses faster, we compare the effusion rates of H[tex]\(_2\)[/tex]S and NH[tex]\(_3\)[/tex].
Taking [tex]\(H_2S\)[/tex] as gas 1 and [tex]\(NH_3\)[/tex] as gas 2:
[tex]\[ \frac{\text{rate}_{NH_3}}{\text{rate}_{H_2S}} = \sqrt{\frac{M_{H_2S}}{M_{NH_3}}} \][/tex]
4. Calculate the ratio:
- Plugging in the molar masses:
[tex]\[ \frac{\text{rate}_{NH_3}}{\text{rate}_{H_2S}} = \sqrt{\frac{34.08}{17.03}} \][/tex]
This ratio evaluates to approximately 1.4146.
5. Interpret the ratio:
- The ratio [tex]\(\sqrt{\frac{34.08}{17.03}} \approx 1.4146\)[/tex] tells us that [tex]\(\text{rate}_{NH_3}\)[/tex] is about 1.4146 times the [tex]\(\text{rate}_{H_2S}\)[/tex].
- Since this value is greater than 1, it indicates that ammonia ([tex]\( NH_3 \)[/tex]) effuses faster than hydrogen sulfide ([tex]\( H_2 S \)[/tex]).
6. Conclusion:
- Hence, ammonia ([tex]\(NH_3\)[/tex]) has the higher effusion rate.
Based on these calculations, the correct answer is:
[tex]\[ \boxed{NH_3} \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.