Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine which rule describes a translation that is 8 units to the right and 2 units up, let's analyze the effect of such translations on the coordinate [tex]\((x, y)\)[/tex].
### Step-by-Step Analysis:
1. Translation 8 units to the right:
- Moving a point 8 units to the right involves increasing the [tex]\(x\)[/tex]-coordinate by 8. Therefore, the new [tex]\(x\)[/tex]-coordinate will be [tex]\(x + 8\)[/tex].
2. Translation 2 units up:
- Moving a point 2 units up involves increasing the [tex]\(y\)[/tex]-coordinate by 2. Therefore, the new [tex]\(y\)[/tex]-coordinate will be [tex]\(y + 2\)[/tex].
Combining these two transformations, the new coordinates of the point after applying the translation will be:
[tex]\[ (x, y) \rightarrow (x + 8, y + 2) \][/tex]
### Selecting the Correct Rule:
Given the choices:
1. [tex]\((x, y) \rightarrow (x - 8, y + 2)\)[/tex]
2. [tex]\((x, y) \rightarrow (x + 8, y + 2)\)[/tex]
3. [tex]\((x, y) \rightarrow (x + 8, y - 2)\)[/tex]
4. [tex]\((x, y) \rightarrow (x - 8, y - 2)\)[/tex]
By analyzing each rule, we observe:
- Option [tex]\((x, y) \rightarrow (x - 8, y + 2)\)[/tex] translates the point 8 units to the left and 2 units up.
- Option [tex]\((x, y) \rightarrow (x + 8, y + 2)\)[/tex] translates the point 8 units to the right and 2 units up.
- Option [tex]\((x, y) \rightarrow (x + 8, y - 2)\)[/tex] translates the point 8 units to the right and 2 units down.
- Option [tex]\((x, y) \rightarrow (x - 8, y - 2)\)[/tex] translates the point 8 units to the left and 2 units down.
Thus, the rule that correctly describes a translation 8 units to the right and 2 units up is:
[tex]\[ (x, y) \rightarrow (x + 8, y + 2) \][/tex]
### Conclusion:
The correct answer is option 2.
[tex]\[ \boxed{2} \][/tex]
### Step-by-Step Analysis:
1. Translation 8 units to the right:
- Moving a point 8 units to the right involves increasing the [tex]\(x\)[/tex]-coordinate by 8. Therefore, the new [tex]\(x\)[/tex]-coordinate will be [tex]\(x + 8\)[/tex].
2. Translation 2 units up:
- Moving a point 2 units up involves increasing the [tex]\(y\)[/tex]-coordinate by 2. Therefore, the new [tex]\(y\)[/tex]-coordinate will be [tex]\(y + 2\)[/tex].
Combining these two transformations, the new coordinates of the point after applying the translation will be:
[tex]\[ (x, y) \rightarrow (x + 8, y + 2) \][/tex]
### Selecting the Correct Rule:
Given the choices:
1. [tex]\((x, y) \rightarrow (x - 8, y + 2)\)[/tex]
2. [tex]\((x, y) \rightarrow (x + 8, y + 2)\)[/tex]
3. [tex]\((x, y) \rightarrow (x + 8, y - 2)\)[/tex]
4. [tex]\((x, y) \rightarrow (x - 8, y - 2)\)[/tex]
By analyzing each rule, we observe:
- Option [tex]\((x, y) \rightarrow (x - 8, y + 2)\)[/tex] translates the point 8 units to the left and 2 units up.
- Option [tex]\((x, y) \rightarrow (x + 8, y + 2)\)[/tex] translates the point 8 units to the right and 2 units up.
- Option [tex]\((x, y) \rightarrow (x + 8, y - 2)\)[/tex] translates the point 8 units to the right and 2 units down.
- Option [tex]\((x, y) \rightarrow (x - 8, y - 2)\)[/tex] translates the point 8 units to the left and 2 units down.
Thus, the rule that correctly describes a translation 8 units to the right and 2 units up is:
[tex]\[ (x, y) \rightarrow (x + 8, y + 2) \][/tex]
### Conclusion:
The correct answer is option 2.
[tex]\[ \boxed{2} \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.