Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.

The table gives the volume of cylinders where the height is a function of the radius of the base. Given the radius, the height can be modeled with the function [tex]\( h(r) \)[/tex], and the volume of the cylinder with the function [tex]\( V(h) \)[/tex].

[tex]\[
\begin{tabular}{|c|c|c|c|}
\hline
$r$ & $h(r)$ & & $V(h)$ \\
\hline
2 & $4 \pi$ & & $16 \pi$ \\
\hline
8 & $64 \pi$ & & $1,024 \pi$ \\
\hline
10 & $10 / 2 \pi$ & & $2,000 \pi$ \\
\hline
12 & $144 \pi$ & & $3,456 \pi$ \\
\hline
\end{tabular}
\][/tex]

Which values complete the table for [tex]\( h(r) \)[/tex]?
[tex]\[
\begin{tabular}{|c|}
\hline
$h(r)$ \\
\hline
$4 \pi$ \\
\hline
$16 \pi$ \\
\hline
$20 \pi$ \\
\hline
$24 \pi$ \\
\hline
\end{tabular}
\][/tex]

[tex]\[
\begin{tabular}{|c|}
\hline
$h(r)$ (cm) \\
\hline
4 \\
\hline
16 \\
\hline
20 \\
\hline
24 \\
\hline
\end{tabular}
\][/tex]


Sagot :

Alright, let's analyze the problem step-by-step.

Given:
1. The table provides the volume of cylinders where the height is a function of the radius of the base.
2. The formula for the volume [tex]\( V \)[/tex] of a cylinder is [tex]\( V = \pi r^2 h \)[/tex].

We can use this formula to find the height [tex]\( h \)[/tex] when we know the volume [tex]\( V \)[/tex] and the radius [tex]\( r \)[/tex].

Given the table:

[tex]\[ \begin{array}{|c|c|c|c|} \hline r & \text{Radius (cm)} & \text{Height (cm)} & \text{Volume} \, (V = \pi r^2 h) \\ \hline 2 & 2 & ? & 16\pi \\ \hline 8 & 8 & ? & 1,024\pi \\ \hline 10 & 10 & ? & 2,000\pi \\ \hline 12 & 12 & ? & 3,456 \pi \\ \hline \end{array} \][/tex]

We are supposed to find the values of [tex]\( h \)[/tex] that complete the table:

1. For [tex]\( r = 2 \)[/tex] and [tex]\( V = 16\pi \)[/tex]:

[tex]\[ 16\pi = \pi (2)^2 h \\ 16\pi = 4\pi h \\ \Rightarrow h = \frac{16\pi}{4\pi} = 4 \][/tex]

So, the height when the radius is 2 cm is [tex]\( 4 \)[/tex] cm.

2. For [tex]\( r = 8 \)[/tex] and [tex]\( V = 1,024\pi \)[/tex]:

[tex]\[ 1,024\pi = \pi (8)^2 h \\ 1,024\pi = 64\pi h \\ \Rightarrow h = \frac{1,024\pi}{64\pi} = 16 \][/tex]

So, the height when the radius is 8 cm is [tex]\( 16 \)[/tex] cm.

3. For [tex]\( r = 10 \)[/tex] and [tex]\( V = 2,000\pi \)[/tex]:

[tex]\[ 2,000\pi = \pi (10)^2 h \\ 2,000\pi = 100\pi h \\ \Rightarrow h = \frac{2,000\pi}{100\pi} = 20 \][/tex]

So, the height when the radius is 10 cm is [tex]\( 20 \)[/tex] cm.

4. For [tex]\( r = 12 \)[/tex] and [tex]\( V = 3,456\pi \)[/tex]:

[tex]\[ 3,456\pi = \pi (12)^2 h \\ 3,456\pi = 144\pi h \\ \Rightarrow h = \frac{3,456\pi}{144\pi} = 24 \][/tex]

So, the height when the radius is 12 cm is [tex]\( 24 \)[/tex] cm.

Completing the table with the values of [tex]\( h \)[/tex]:

[tex]\[ \begin{array}{|c|c|c|c|} \hline r & \text{Radius (cm)} & h \, (\text{Height (cm)}) & V \, (\text{Volume}) \\ \hline 2 & 2 & 4 & 16\pi \\ \hline 8 & 8 & 16 & 1,024\pi \\ \hline 10 & 10 & 20 & 2,000\pi \\ \hline 12 & 12 & 24 & 3,456\pi \\ \hline \end{array} \][/tex]