Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Let's outline a detailed, step-by-step solution to transform and combine these intermediate chemical equations according to the given instructions:
1. Initial Equations:
- Equation 1: [tex]\( 2 H_2(g) + O_2(g) \rightarrow 2 H_2O(l) \)[/tex]
- Equation 2: [tex]\( H_2(g) + F_2(g) \rightarrow 2 HF(g) \)[/tex]
2. Alter Equation 2 by Multiplying It by 2:
- Original Equation 2: [tex]\( H_2(g) + F_2(g) \rightarrow 2 HF(g) \)[/tex]
- Multiply all coefficients by 2:
[tex]\[ 2[H_2(g) + F_2(g)] \rightarrow 4 HF(g) \][/tex]
- The simplified form is:
[tex]\[ 2 H_2(g) + 2 F_2(g) \rightarrow 4 HF(g) \][/tex]
3. Reverse Equation 1:
- Original Equation 1: [tex]\( 2 H_2(g) + O_2(g) \rightarrow 2 H_2O(l) \)[/tex]
- Reverse the equation:
[tex]\[ 2 H_2O(l) \rightarrow 2 H_2(g) + O_2(g) \][/tex]
4. Resulting Altered Equations:
- Altered Equation 1 (Reversed): [tex]\( 2 H_2O(l) \rightarrow 2 H_2(g) + O_2(g) \)[/tex]
- Altered Equation 2 (Multiplied by 2): [tex]\( 2 H_2(g) + 2 F_2(g) \rightarrow 4 HF(g) \)[/tex]
Therefore, based on the given instructions, we have:
[tex]\[ 2 H_2O(l) \rightarrow 2 H_2(g) + O_2(g) \][/tex]
[tex]\[ 2 H_2(g) + 2 F_2(g) \rightarrow 4 HF(g) \][/tex]
The final forms of the altered equations are:
- Equation 1: [tex]\( 2 H_2O(l) \rightarrow 2 H_2(g) + O_2(g) \)[/tex]
- Equation 2: [tex]\( 2 H_2(g) + 2 F_2(g) \rightarrow 4 HF(g) \)[/tex]
These are the intermediates needed to form the desired chemical reaction with [tex]\(HF\)[/tex] and [tex]\(O_2\)[/tex] as the products using [tex]\(H_2O\)[/tex] and [tex]\(F_2\)[/tex].
1. Initial Equations:
- Equation 1: [tex]\( 2 H_2(g) + O_2(g) \rightarrow 2 H_2O(l) \)[/tex]
- Equation 2: [tex]\( H_2(g) + F_2(g) \rightarrow 2 HF(g) \)[/tex]
2. Alter Equation 2 by Multiplying It by 2:
- Original Equation 2: [tex]\( H_2(g) + F_2(g) \rightarrow 2 HF(g) \)[/tex]
- Multiply all coefficients by 2:
[tex]\[ 2[H_2(g) + F_2(g)] \rightarrow 4 HF(g) \][/tex]
- The simplified form is:
[tex]\[ 2 H_2(g) + 2 F_2(g) \rightarrow 4 HF(g) \][/tex]
3. Reverse Equation 1:
- Original Equation 1: [tex]\( 2 H_2(g) + O_2(g) \rightarrow 2 H_2O(l) \)[/tex]
- Reverse the equation:
[tex]\[ 2 H_2O(l) \rightarrow 2 H_2(g) + O_2(g) \][/tex]
4. Resulting Altered Equations:
- Altered Equation 1 (Reversed): [tex]\( 2 H_2O(l) \rightarrow 2 H_2(g) + O_2(g) \)[/tex]
- Altered Equation 2 (Multiplied by 2): [tex]\( 2 H_2(g) + 2 F_2(g) \rightarrow 4 HF(g) \)[/tex]
Therefore, based on the given instructions, we have:
[tex]\[ 2 H_2O(l) \rightarrow 2 H_2(g) + O_2(g) \][/tex]
[tex]\[ 2 H_2(g) + 2 F_2(g) \rightarrow 4 HF(g) \][/tex]
The final forms of the altered equations are:
- Equation 1: [tex]\( 2 H_2O(l) \rightarrow 2 H_2(g) + O_2(g) \)[/tex]
- Equation 2: [tex]\( 2 H_2(g) + 2 F_2(g) \rightarrow 4 HF(g) \)[/tex]
These are the intermediates needed to form the desired chemical reaction with [tex]\(HF\)[/tex] and [tex]\(O_2\)[/tex] as the products using [tex]\(H_2O\)[/tex] and [tex]\(F_2\)[/tex].
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.