Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

The gravitational force between two masses at a distance of [tex][tex]$2.5 \times 10^4 \, \text{km}$[/tex][/tex] is [tex][tex]$250 \, \text{N}$[/tex][/tex]. What should be the distance between them to reduce the gravitational force by half?

Sagot :

Let's solve the problem step-by-step:

1. Understanding the problem: We are given the gravitational force between two masses is 250 N at a distance of [tex]\( 2.5 \times 10^4 \)[/tex] km. We need to find the distance at which the gravitational force would be reduced to half of its original value.

2. Gravitational force relationship:
The gravitational force [tex]\( F \)[/tex] between two masses is given by:
[tex]\[ F = G \frac{m_1 m_2}{r^2} \][/tex]
where [tex]\( G \)[/tex] is the gravitational constant, [tex]\( m_1 \)[/tex] and [tex]\( m_2 \)[/tex] are the masses, and [tex]\( r \)[/tex] is the distance between them.

3. Initial conditions:
[tex]\[ F_{\text{initial}} = 250 \text{ N} \][/tex]
[tex]\[ r_{\text{initial}} = 2.5 \times 10^4 \text{ km} \][/tex]

4. Target conditions: We want the force to be half of the initial force:
[tex]\[ F_{\text{target}} = \frac{F_{\text{initial}}}{2} = \frac{250}{2} = 125 \text{ N} \][/tex]

5. Relationship between forces and distances:
Since the gravitational force [tex]\( F \)[/tex] is inversely proportional to the square of the distance [tex]\( r \)[/tex]:
[tex]\[ \frac{F_{\text{initial}}}{F_{\text{target}}} = \left(\frac{r_{\text{target}}}{r_{\text{initial}}}\right)^2 \][/tex]

6. Substitute known values:
[tex]\[ \frac{250 \text{ N}}{125 \text{ N}} = \left(\frac{r_{\text{target}}}{2.5 \times 10^4 \text{ km}}\right)^2 \][/tex]
This simplifies to:
[tex]\[ 2 = \left(\frac{r_{\text{target}}}{2.5 \times 10^4 \text{ km}}\right)^2 \][/tex]

7. Solve for [tex]\( r_{\text{target}} \)[/tex]:
Take the square root of both sides:
[tex]\[ \sqrt{2} = \frac{r_{\text{target}}}{2.5 \times 10^4 \text{ km}} \][/tex]
Therefore:
[tex]\[ r_{\text{target}} = 2.5 \times 10^4 \text{ km} \times \sqrt{2} \][/tex]

8. Calculate [tex]\( r_{\text{target}} \)[/tex]:
[tex]\[ r_{\text{target}} = 2.5 \times 10^4 \times 1.414 \approx 35355.339 \text{ km} \][/tex]

Thus, the distance between the two masses should be approximately [tex]\( 35355.339 \)[/tex] km to reduce the gravitational force between them by half.
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.