Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Ask your questions and receive precise answers from experienced professionals across different disciplines. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Certainly! Let's define the recursively defined function to describe the given geometric sequence:
The sequence provided is:
[tex]\[ -21, 63, -189, 567, \ldots \][/tex]
### Determining the first term ([tex]\(a_1\)[/tex]):
The first term of the sequence ([tex]\(a_1\)[/tex]) is [tex]\( -21 \)[/tex].
### Identifying the common ratio:
To determine the common ratio, we divide the second term by the first term, the third term by the second term, and so on to confirm consistency.
[tex]\[ \frac{63}{-21} = -3 \][/tex]
[tex]\[ \frac{-189}{63} = -3 \][/tex]
[tex]\[ \frac{567}{-189} = -3 \][/tex]
We see that the common ratio is [tex]\( -3 \)[/tex].
### Formulating the recursive function:
We can now complete the recursive function definition for this sequence. The recursive definition has two parts: the base case and the recursive case.
#### Base Case:
[tex]\( f(1) \)[/tex] is the first term of the sequence.
[tex]\[ f(1) = -21 \][/tex]
#### Recursive Case:
For [tex]\( n \geq 2 \)[/tex], each term is obtained by multiplying the previous term [tex]\( f(n-1) \)[/tex] by the common ratio [tex]\( -3 \)[/tex].
[tex]\[ f(n) = -3 \cdot f(n-1) \quad \text{for} \; n = 2, 3, 4, \ldots \][/tex]
### Final Formulation of the Recursive Function:
[tex]\[ f(1) = -21 \][/tex]
[tex]\[ f(n) = -3 \cdot f(n-1) \quad \text{for} \; n = 2, 3, 4, \ldots \][/tex]
### Completion:
Therefore, the complete recursively defined function for the geometric sequence is:
[tex]\[ f(1) = -21 \][/tex]
[tex]\[ f(n) = -3 \cdot f(n-1) \quad \text{for} \; n = 2, 3, 4, \ldots \][/tex]
The sequence provided is:
[tex]\[ -21, 63, -189, 567, \ldots \][/tex]
### Determining the first term ([tex]\(a_1\)[/tex]):
The first term of the sequence ([tex]\(a_1\)[/tex]) is [tex]\( -21 \)[/tex].
### Identifying the common ratio:
To determine the common ratio, we divide the second term by the first term, the third term by the second term, and so on to confirm consistency.
[tex]\[ \frac{63}{-21} = -3 \][/tex]
[tex]\[ \frac{-189}{63} = -3 \][/tex]
[tex]\[ \frac{567}{-189} = -3 \][/tex]
We see that the common ratio is [tex]\( -3 \)[/tex].
### Formulating the recursive function:
We can now complete the recursive function definition for this sequence. The recursive definition has two parts: the base case and the recursive case.
#### Base Case:
[tex]\( f(1) \)[/tex] is the first term of the sequence.
[tex]\[ f(1) = -21 \][/tex]
#### Recursive Case:
For [tex]\( n \geq 2 \)[/tex], each term is obtained by multiplying the previous term [tex]\( f(n-1) \)[/tex] by the common ratio [tex]\( -3 \)[/tex].
[tex]\[ f(n) = -3 \cdot f(n-1) \quad \text{for} \; n = 2, 3, 4, \ldots \][/tex]
### Final Formulation of the Recursive Function:
[tex]\[ f(1) = -21 \][/tex]
[tex]\[ f(n) = -3 \cdot f(n-1) \quad \text{for} \; n = 2, 3, 4, \ldots \][/tex]
### Completion:
Therefore, the complete recursively defined function for the geometric sequence is:
[tex]\[ f(1) = -21 \][/tex]
[tex]\[ f(n) = -3 \cdot f(n-1) \quad \text{for} \; n = 2, 3, 4, \ldots \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.