Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Answer:
Let's simplify the given expression step by simplify
\[
(8 - 3^i) - (8 - 3^i)(8 + 8^i)
\]
First, let's distribute in the second term:
\[
(8 - 3^i) - (8 - 3^i)(8 + 8^i)
\]
We can rewrite the second term using the distributive property:
\[
(8 - 3^i) - [8(8 + 8^i) - 3^i(8 + 8^i)]
\]
Next, let's distribute inside the brackets:
\[
8(8 + 8^i) = 8 \cdot 8 + 8 \cdot 8^i = 64 + 8 \cdot 8^i
\]
\[
-3^i(8 + 8^i) = -3^i \cdot 8 - 3^i \cdot 8^i
\]
Combine these:
\[
8(8 + 8^i) - 3^i(8 + 8^i) = 64 + 8 \cdot 8^i - 3^i \cdot 8 - 3^i \cdot 8^i
\]
Now substitute back into the original expression:
\[
(8 - 3^i) - (64 + 8 \cdot 8^i - 3^i \cdot 8 - 3^i \cdot 8^i)
\]
Distribute the negative sign:
\[
(8 - 3^i) - 64 - 8 \cdot 8^i + 3^i \cdot 8 + 3^i \cdot 8^i
\]
Now combine like terms:
\[
8 - 3^i - 64 - 8 \cdot 8^i + 3^i \cdot 8 + 3^i \cdot 8^i
\]
Reorganize to see if any terms cancel out:
\[
8 - 64 - 3^i + 3^i \cdot 8 - 8 \cdot 8^i + 3^i \cdot 8^i
\]
Simplify:
\[
8 - 64 - 3^i + 8 \cdot 3^i - 8 \cdot 8^i + 3^i \cdot 8^i
\]
Combine like terms:
\[
-56 + 5 \cdot 3^i - 8 \cdot 8^i + 3^i \cdot 8^i
\]
The final simplified form of the expression is:
\[
-56 + 5 \cdot 3^i - 8 \cdot 8^i + 3^i \cdot 8^i
\]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.