Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To solve the problem of balancing the combustion reaction for cyclohexane ([tex]\(C_6H_{12}\)[/tex]), we'll follow a step-by-step approach:
1. Identify the chemical equation for the combustion reaction:
[tex]\[ C_6H_{12} + O_2 \rightarrow CO_2 + H_2O \][/tex]
2. Determine the number of atoms of each element on both sides of the equation:
- Reactants:
- 1 molecule of [tex]\(C_6H_{12}\)[/tex] contains:
- Carbon (C): 6 atoms
- Hydrogen (H): 12 atoms
- [tex]\(O_2\)[/tex] molecules will contain oxygen. We need to balance coefficients later.
- Products:
- [tex]\(CO_2\)[/tex] contains:
- Carbon (C): 1 atom
- Oxygen (O): 2 atoms
- [tex]\(H_2O\)[/tex] contains:
- Hydrogen (H): 2 atoms
- Oxygen (O): 1 atom
3. Balance each element, starting with carbon:
- On the reactant side, we have 6 carbon atoms from [tex]\(C_6H_{12}\)[/tex].
- Therefore, we need 6 carbon atoms on the product side, which means we will have 6 [tex]\(CO_2\)[/tex] molecules.
[tex]\[ C_6H_{12} + O_2 \rightarrow 6 CO_2 + H_2O \][/tex]
4. Balance hydrogen atoms next:
- On the reactant side, we have 12 hydrogen atoms from [tex]\(C_6H_{12}\)[/tex].
- Therefore, we need 12 hydrogen atoms on the product side, which means we will have 6 [tex]\(H_2O\)[/tex] molecules (since [tex]\(H_2O\)[/tex] contains 2 hydrogen atoms each).
[tex]\[ C_6H_{12} + O_2 \rightarrow 6 CO_2 + 6 H_2O \][/tex]
5. Balance oxygen atoms last:
- On the product side, we have:
- From [tex]\(6 CO_2\)[/tex]: [tex]\(6 \times 2 = 12\)[/tex] oxygen atoms
- From [tex]\(6 H_2O\)[/tex]: [tex]\(6 \times 1 = 6\)[/tex] oxygen atoms
- Total oxygen atoms needed: [tex]\(12 + 6 = 18\)[/tex] oxygen atoms
- [tex]\(O_2\)[/tex] molecule contains 2 oxygen atoms. To get 18 oxygen atoms, we need 9 [tex]\(O_2\)[/tex] molecules.
[tex]\[ C_6H_{12} + 9 O_2 \rightarrow 6 CO_2 + 6 H_2O \][/tex]
6. Final balanced equation:
[tex]\[ C_6H_{12} + 9 O_2 \rightarrow 6 CO_2 + 6 H_2O \][/tex]
7. Conclusion:
For every molecule of cyclohexane ([tex]\(C_6H_{12}\)[/tex]) burned, 6 molecules of carbon dioxide ([tex]\(CO_2\)[/tex]) are produced. Thus, the correct answer is:
A. 6
1. Identify the chemical equation for the combustion reaction:
[tex]\[ C_6H_{12} + O_2 \rightarrow CO_2 + H_2O \][/tex]
2. Determine the number of atoms of each element on both sides of the equation:
- Reactants:
- 1 molecule of [tex]\(C_6H_{12}\)[/tex] contains:
- Carbon (C): 6 atoms
- Hydrogen (H): 12 atoms
- [tex]\(O_2\)[/tex] molecules will contain oxygen. We need to balance coefficients later.
- Products:
- [tex]\(CO_2\)[/tex] contains:
- Carbon (C): 1 atom
- Oxygen (O): 2 atoms
- [tex]\(H_2O\)[/tex] contains:
- Hydrogen (H): 2 atoms
- Oxygen (O): 1 atom
3. Balance each element, starting with carbon:
- On the reactant side, we have 6 carbon atoms from [tex]\(C_6H_{12}\)[/tex].
- Therefore, we need 6 carbon atoms on the product side, which means we will have 6 [tex]\(CO_2\)[/tex] molecules.
[tex]\[ C_6H_{12} + O_2 \rightarrow 6 CO_2 + H_2O \][/tex]
4. Balance hydrogen atoms next:
- On the reactant side, we have 12 hydrogen atoms from [tex]\(C_6H_{12}\)[/tex].
- Therefore, we need 12 hydrogen atoms on the product side, which means we will have 6 [tex]\(H_2O\)[/tex] molecules (since [tex]\(H_2O\)[/tex] contains 2 hydrogen atoms each).
[tex]\[ C_6H_{12} + O_2 \rightarrow 6 CO_2 + 6 H_2O \][/tex]
5. Balance oxygen atoms last:
- On the product side, we have:
- From [tex]\(6 CO_2\)[/tex]: [tex]\(6 \times 2 = 12\)[/tex] oxygen atoms
- From [tex]\(6 H_2O\)[/tex]: [tex]\(6 \times 1 = 6\)[/tex] oxygen atoms
- Total oxygen atoms needed: [tex]\(12 + 6 = 18\)[/tex] oxygen atoms
- [tex]\(O_2\)[/tex] molecule contains 2 oxygen atoms. To get 18 oxygen atoms, we need 9 [tex]\(O_2\)[/tex] molecules.
[tex]\[ C_6H_{12} + 9 O_2 \rightarrow 6 CO_2 + 6 H_2O \][/tex]
6. Final balanced equation:
[tex]\[ C_6H_{12} + 9 O_2 \rightarrow 6 CO_2 + 6 H_2O \][/tex]
7. Conclusion:
For every molecule of cyclohexane ([tex]\(C_6H_{12}\)[/tex]) burned, 6 molecules of carbon dioxide ([tex]\(CO_2\)[/tex]) are produced. Thus, the correct answer is:
A. 6
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.