Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To convert the expression [tex]\(6^{\frac{1}{12}}\)[/tex] into radical form, we need to recall a fundamental principle of exponents and radicals. In general, if we have an expression of the form [tex]\(x^{\frac{1}{n}}\)[/tex], it can be rewritten as the [tex]\(n\)[/tex]-th root of [tex]\(x\)[/tex], which is [tex]\(\sqrt[n]{x}\)[/tex].
Given:
[tex]\[ 6^{\frac{1}{12}} \][/tex]
We can rewrite this using the relationship between exponents and radicals:
[tex]\[ 6^{\frac{1}{12}} = \sqrt[12]{6} \][/tex]
None of the provided answer choices directly match this form. Let's analyze each option briefly to confirm:
1. [tex]\(\sqrt[7]{6^{12}}\)[/tex]:
- This is the 7th root of [tex]\(6^{12}\)[/tex], which is not equivalent to [tex]\(6^{\frac{1}{12}}\)[/tex].
2. [tex]\(\sqrt[12]{6^7}\)[/tex]:
- This is the 12th root of [tex]\(6^7\)[/tex], which is not equivalent to [tex]\(6^{\frac{1}{12}}\)[/tex].
3. [tex]\(\sqrt[12]{7 \cdot 6}\)[/tex]:
- This is the 12th root of the product [tex]\(7 \cdot 6\)[/tex], which is also not equivalent to [tex]\(6^{\frac{1}{12}}\)[/tex].
Thus, the correct radical form for [tex]\(6^{\frac{1}{12}}\)[/tex] is:
[tex]\[ \sqrt[12]{6} \][/tex]
Given:
[tex]\[ 6^{\frac{1}{12}} \][/tex]
We can rewrite this using the relationship between exponents and radicals:
[tex]\[ 6^{\frac{1}{12}} = \sqrt[12]{6} \][/tex]
None of the provided answer choices directly match this form. Let's analyze each option briefly to confirm:
1. [tex]\(\sqrt[7]{6^{12}}\)[/tex]:
- This is the 7th root of [tex]\(6^{12}\)[/tex], which is not equivalent to [tex]\(6^{\frac{1}{12}}\)[/tex].
2. [tex]\(\sqrt[12]{6^7}\)[/tex]:
- This is the 12th root of [tex]\(6^7\)[/tex], which is not equivalent to [tex]\(6^{\frac{1}{12}}\)[/tex].
3. [tex]\(\sqrt[12]{7 \cdot 6}\)[/tex]:
- This is the 12th root of the product [tex]\(7 \cdot 6\)[/tex], which is also not equivalent to [tex]\(6^{\frac{1}{12}}\)[/tex].
Thus, the correct radical form for [tex]\(6^{\frac{1}{12}}\)[/tex] is:
[tex]\[ \sqrt[12]{6} \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.