Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine which object is on the tallest hill, we need to calculate the height of each hill using the potential energy formula:
[tex]\[ E_p = m \cdot g \cdot h \][/tex]
where [tex]\(E_p\)[/tex] is the potential energy, [tex]\(m\)[/tex] is the mass, [tex]\(g\)[/tex] is the acceleration due to gravity (9.8 m/s²), and [tex]\(h\)[/tex] is the height. We can rearrange this formula to solve for height [tex]\(h\)[/tex]:
[tex]\[ h = \frac{E_p}{m \cdot g} \][/tex]
Let's calculate the height for each object step by step.
1. Object W:
[tex]\[ m = 50 \, \text{kg}, \, E_p = 980 \, \text{J} \][/tex]
[tex]\[ h = \frac{980}{50 \times 9.8} = \frac{980}{490} \approx 2 \, \text{m} \][/tex]
2. Object X:
[tex]\[ m = 35 \, \text{kg}, \, E_p = 1{,}029 \, \text{J} \][/tex]
[tex]\[ h = \frac{1{,}029}{35 \times 9.8} = \frac{1{,}029}{343} \approx 3 \, \text{m} \][/tex]
3. Object Y:
[tex]\[ m = 62 \, \text{kg}, \, E_p = 1{,}519 \, \text{J} \][/tex]
[tex]\[ h = \frac{1{,}519}{62 \times 9.8} = \frac{1{,}519}{607.6} \approx 2.5 \, \text{m} \][/tex]
4. Object Z:
[tex]\[ m = 24 \, \text{kg}, \, E_p = 1{,}176 \, \text{J} \][/tex]
[tex]\[ h = \frac{1{,}176}{24 \times 9.8} = \frac{1{,}176}{235.2} \approx 5 \, \text{m} \][/tex]
The calculated heights are:
- Object W: 2 meters
- Object X: 3 meters
- Object Y: 2.5 meters
- Object Z: 5 meters
From these calculations, we see that Object Z is on the tallest hill with a height of approximately 5 meters.
Thus, the answer is:
Z
[tex]\[ E_p = m \cdot g \cdot h \][/tex]
where [tex]\(E_p\)[/tex] is the potential energy, [tex]\(m\)[/tex] is the mass, [tex]\(g\)[/tex] is the acceleration due to gravity (9.8 m/s²), and [tex]\(h\)[/tex] is the height. We can rearrange this formula to solve for height [tex]\(h\)[/tex]:
[tex]\[ h = \frac{E_p}{m \cdot g} \][/tex]
Let's calculate the height for each object step by step.
1. Object W:
[tex]\[ m = 50 \, \text{kg}, \, E_p = 980 \, \text{J} \][/tex]
[tex]\[ h = \frac{980}{50 \times 9.8} = \frac{980}{490} \approx 2 \, \text{m} \][/tex]
2. Object X:
[tex]\[ m = 35 \, \text{kg}, \, E_p = 1{,}029 \, \text{J} \][/tex]
[tex]\[ h = \frac{1{,}029}{35 \times 9.8} = \frac{1{,}029}{343} \approx 3 \, \text{m} \][/tex]
3. Object Y:
[tex]\[ m = 62 \, \text{kg}, \, E_p = 1{,}519 \, \text{J} \][/tex]
[tex]\[ h = \frac{1{,}519}{62 \times 9.8} = \frac{1{,}519}{607.6} \approx 2.5 \, \text{m} \][/tex]
4. Object Z:
[tex]\[ m = 24 \, \text{kg}, \, E_p = 1{,}176 \, \text{J} \][/tex]
[tex]\[ h = \frac{1{,}176}{24 \times 9.8} = \frac{1{,}176}{235.2} \approx 5 \, \text{m} \][/tex]
The calculated heights are:
- Object W: 2 meters
- Object X: 3 meters
- Object Y: 2.5 meters
- Object Z: 5 meters
From these calculations, we see that Object Z is on the tallest hill with a height of approximately 5 meters.
Thus, the answer is:
Z
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.