At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

If [tex]\cot \theta = \frac{3}{4}[/tex] and the terminal point determined by [tex]\theta[/tex] is in quadrant 3, then:

A. [tex]\sin \theta = \frac{3}{5}[/tex]
B. [tex]\csc \theta = -\frac{5}{3}[/tex]
C. [tex]\cos \theta = -\frac{3}{5}[/tex]
D. [tex]\tan \theta = \frac{4}{3}[/tex]


Sagot :

To solve the problem given that [tex]\(\cot{\theta} = \frac{3}{4}\)[/tex] and the angle [tex]\(\theta\)[/tex] is in the third quadrant, let’s proceed step-by-step:

1. Identify relevant trigonometric relationships:
[tex]\(\cot{\theta} = \frac{\cos{\theta}}{\sin{\theta}} = \frac{3}{4}\)[/tex]

2. Analyze the quadrant information:
Since [tex]\(\theta\)[/tex] is in the third quadrant, both [tex]\(\sin{\theta}\)[/tex] and [tex]\(\cos{\theta}\)[/tex] are negative.

3. Determine [tex]\(\tan{\theta}\)[/tex]:
[tex]\[ \tan{\theta} = \frac{1}{\cot{\theta}} = \frac{1}{\frac{3}{4}} = \frac{4}{3} \][/tex]
In the third quadrant, [tex]\(\tan{\theta}\)[/tex] is positive since both the sine and cosine are negative, and their quotient gives a positive value. Therefore:
[tex]\[ \tan{\theta} = \frac{4}{3} \][/tex]

4. Express [tex]\(\sin{\theta}\)[/tex] and [tex]\(\cos{\theta}\)[/tex] in terms of a common variable:
[tex]\[ \cot{\theta} = \frac{3}{4} = \frac{\cos{\theta}}{\sin{\theta}} \implies \cos{\theta} = 3k \text{ and } \sin{\theta} = 4k \][/tex]

5. Use the Pythagorean identity:
The Pythagorean identity states:
[tex]\[ \sin^2{\theta} + \cos^2{\theta} = 1 \][/tex]
Substituting [tex]\(\cos{\theta} = 3k\)[/tex] and [tex]\(\sin{\theta} = 4k\)[/tex]:
[tex]\[ (3k)^2 + (4k)^2 = 1 \][/tex]
[tex]\[ 9k^2 + 16k^2 = 1 \][/tex]
[tex]\[ 25k^2 = 1 \implies k^2 = \frac{1}{25} \implies k = \frac{1}{5} \][/tex]

6. Find [tex]\(\sin{\theta}\)[/tex] and [tex]\(\cos{\theta}\)[/tex]:
[tex]\[ \sin{\theta} = 4k = 4 \times \frac{1}{5} = \frac{4}{5} \][/tex]
[tex]\[ \cos{\theta} = 3k = 3 \times \frac{1}{5} = \frac{3}{5} \][/tex]
Since both sine and cosine are negative in the third quadrant:
[tex]\[ \sin{\theta} = -\frac{4}{5} \quad \text{and} \quad \cos{\theta} = -\frac{3}{5} \][/tex]

7. Determine [tex]\(\csc{\theta}\)[/tex]:
[tex]\[ \csc{\theta} = \frac{1}{\sin{\theta}} = \frac{1}{-\frac{4}{5}} = -\frac{5}{4} \][/tex]

Now compare these values to the options given:

A. [tex]\(\sin{\theta} = \frac{3}{5}\)[/tex] [tex]\(\rightarrow\)[/tex] Incorrect, it should be [tex]\(-\frac{4}{5}\)[/tex].

B. [tex]\(\csc{\theta} = -\frac{5}{3}\)[/tex] [tex]\(\rightarrow\)[/tex] Incorrect, it should be [tex]\(-\frac{5}{4}\)[/tex].

C. [tex]\(\cos{\theta} = -\frac{3}{5}\)[/tex] [tex]\(\rightarrow\)[/tex] Correct.

D. [tex]\(\tan{\theta} = \frac{4}{3}\)[/tex] [tex]\(\rightarrow\)[/tex] Correct.

Therefore, the correct answers are C and D.
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.