Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Given the equation of the parabola:
[tex]\[ (x-1)^2 = 8(y+4) \][/tex]
We recognize that this equation is in the standard form of a vertical parabola:
[tex]\[ (x-h)^2 = 4p(y-k) \][/tex]
where [tex]\((h, k)\)[/tex] is the vertex and [tex]\(p\)[/tex] is the distance from the vertex to the focus.
To match the given equation with the standard form, we compare:
[tex]\[ (x-1)^2 = 8(y+4) \][/tex]
with
[tex]\[ (x-h)^2 = 4p(y-k) \][/tex]
From this comparison, we identify:
- [tex]\(h = 1\)[/tex]
- [tex]\(k = -4\)[/tex]
- [tex]\(4p = 8\)[/tex]
Now, let's solve for [tex]\(p\)[/tex]:
[tex]\[ 4p = 8 \implies p = \frac{8}{4} = 2 \][/tex]
The vertex of the parabola is at [tex]\((h, k)\)[/tex], which gives us:
[tex]\[ \text{Vertex} = (1, -4) \][/tex]
The focus of a parabola in this form [tex]\((x-h)^2 = 4p(y-k)\)[/tex] is located at [tex]\((h, k+p)\)[/tex].
So, the coordinates of the focus are:
[tex]\[ \text{Focus} = (1, -4 + 2) = (1, -2) \][/tex]
The directrix of the parabola is the line [tex]\(y = k - p\)[/tex].
Substituting the values of [tex]\(k\)[/tex] and [tex]\(p\)[/tex]:
[tex]\[ \text{Directrix} = y = -4 - 2 = -6 \][/tex]
Hence, the focus and directrix of the given parabola are:
[tex]\[ \text{Focus}: (1, -2) \][/tex]
[tex]\[ \text{Directrix}: y = -6 \][/tex]
[tex]\[ (x-1)^2 = 8(y+4) \][/tex]
We recognize that this equation is in the standard form of a vertical parabola:
[tex]\[ (x-h)^2 = 4p(y-k) \][/tex]
where [tex]\((h, k)\)[/tex] is the vertex and [tex]\(p\)[/tex] is the distance from the vertex to the focus.
To match the given equation with the standard form, we compare:
[tex]\[ (x-1)^2 = 8(y+4) \][/tex]
with
[tex]\[ (x-h)^2 = 4p(y-k) \][/tex]
From this comparison, we identify:
- [tex]\(h = 1\)[/tex]
- [tex]\(k = -4\)[/tex]
- [tex]\(4p = 8\)[/tex]
Now, let's solve for [tex]\(p\)[/tex]:
[tex]\[ 4p = 8 \implies p = \frac{8}{4} = 2 \][/tex]
The vertex of the parabola is at [tex]\((h, k)\)[/tex], which gives us:
[tex]\[ \text{Vertex} = (1, -4) \][/tex]
The focus of a parabola in this form [tex]\((x-h)^2 = 4p(y-k)\)[/tex] is located at [tex]\((h, k+p)\)[/tex].
So, the coordinates of the focus are:
[tex]\[ \text{Focus} = (1, -4 + 2) = (1, -2) \][/tex]
The directrix of the parabola is the line [tex]\(y = k - p\)[/tex].
Substituting the values of [tex]\(k\)[/tex] and [tex]\(p\)[/tex]:
[tex]\[ \text{Directrix} = y = -4 - 2 = -6 \][/tex]
Hence, the focus and directrix of the given parabola are:
[tex]\[ \text{Focus}: (1, -2) \][/tex]
[tex]\[ \text{Directrix}: y = -6 \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.