At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Let's analyze the function [tex]\( f(x) = a(x+k)^{1/n} + c \)[/tex] in terms of its domain and range step-by-step.
### Domain:
1. The domain of a function is the set of all possible input values (x-values) that the function can accept.
2. Here, we have a radical function with a fractional exponent [tex]\( (1/n) \)[/tex].
3. For even [tex]\( n \)[/tex], the expression inside the radical, [tex]\( (x+k) \)[/tex], must be non-negative because the even root of a negative number is not defined in the set of real numbers.
4. Therefore, for even [tex]\( n \)[/tex], the value of [tex]\( (x+k) \)[/tex] must be greater than or equal to 0:
[tex]\[ x + k \geq 0 \implies x \geq -k \][/tex]
5. Hence, for even [tex]\( n \)[/tex], the domain is [tex]\([-k, \infty)\)[/tex].
### Range:
1. The range of the function is the set of all possible output values (y-values) the function can produce.
2. Evaluate the function at the endpoint of the domain. When [tex]\( x = -k \)[/tex], the expression inside the radical becomes zero:
[tex]\[ f(-k) = a(0)^{1/n} + c = a \cdot 0 + c = c \][/tex]
3. As [tex]\( x \)[/tex] increases from [tex]\(-k\)[/tex] to [tex]\(\infty\)[/tex], [tex]\( (x+k)^{1/n} \)[/tex] produces values starting from 0 and increasing to infinity.
4. Because the radical function produces non-negative values, multiplying by [tex]\( a \)[/tex] keeps it non-negative if [tex]\( a \)[/tex] is positive. Adding [tex]\( c \)[/tex] shifts the entire range upwards by [tex]\( c \)[/tex]:
[tex]\[ f(x) = a(x+k)^{1/n} + c \quad \text{starts from} \quad c \quad \text{and goes to} \quad \infty \][/tex]
5. Thus, the range of the function is [tex]\([c, \infty)\)[/tex].
By analyzing both the domain and range, the correct answer is:
A. The domain is [tex]\([-k, \infty)\)[/tex], and the range is [tex]\([c, \infty)\)[/tex].
### Domain:
1. The domain of a function is the set of all possible input values (x-values) that the function can accept.
2. Here, we have a radical function with a fractional exponent [tex]\( (1/n) \)[/tex].
3. For even [tex]\( n \)[/tex], the expression inside the radical, [tex]\( (x+k) \)[/tex], must be non-negative because the even root of a negative number is not defined in the set of real numbers.
4. Therefore, for even [tex]\( n \)[/tex], the value of [tex]\( (x+k) \)[/tex] must be greater than or equal to 0:
[tex]\[ x + k \geq 0 \implies x \geq -k \][/tex]
5. Hence, for even [tex]\( n \)[/tex], the domain is [tex]\([-k, \infty)\)[/tex].
### Range:
1. The range of the function is the set of all possible output values (y-values) the function can produce.
2. Evaluate the function at the endpoint of the domain. When [tex]\( x = -k \)[/tex], the expression inside the radical becomes zero:
[tex]\[ f(-k) = a(0)^{1/n} + c = a \cdot 0 + c = c \][/tex]
3. As [tex]\( x \)[/tex] increases from [tex]\(-k\)[/tex] to [tex]\(\infty\)[/tex], [tex]\( (x+k)^{1/n} \)[/tex] produces values starting from 0 and increasing to infinity.
4. Because the radical function produces non-negative values, multiplying by [tex]\( a \)[/tex] keeps it non-negative if [tex]\( a \)[/tex] is positive. Adding [tex]\( c \)[/tex] shifts the entire range upwards by [tex]\( c \)[/tex]:
[tex]\[ f(x) = a(x+k)^{1/n} + c \quad \text{starts from} \quad c \quad \text{and goes to} \quad \infty \][/tex]
5. Thus, the range of the function is [tex]\([c, \infty)\)[/tex].
By analyzing both the domain and range, the correct answer is:
A. The domain is [tex]\([-k, \infty)\)[/tex], and the range is [tex]\([c, \infty)\)[/tex].
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.