Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Let's analyze the function [tex]\( f(x) = a(x+k)^{1/n} + c \)[/tex] in terms of its domain and range step-by-step.
### Domain:
1. The domain of a function is the set of all possible input values (x-values) that the function can accept.
2. Here, we have a radical function with a fractional exponent [tex]\( (1/n) \)[/tex].
3. For even [tex]\( n \)[/tex], the expression inside the radical, [tex]\( (x+k) \)[/tex], must be non-negative because the even root of a negative number is not defined in the set of real numbers.
4. Therefore, for even [tex]\( n \)[/tex], the value of [tex]\( (x+k) \)[/tex] must be greater than or equal to 0:
[tex]\[ x + k \geq 0 \implies x \geq -k \][/tex]
5. Hence, for even [tex]\( n \)[/tex], the domain is [tex]\([-k, \infty)\)[/tex].
### Range:
1. The range of the function is the set of all possible output values (y-values) the function can produce.
2. Evaluate the function at the endpoint of the domain. When [tex]\( x = -k \)[/tex], the expression inside the radical becomes zero:
[tex]\[ f(-k) = a(0)^{1/n} + c = a \cdot 0 + c = c \][/tex]
3. As [tex]\( x \)[/tex] increases from [tex]\(-k\)[/tex] to [tex]\(\infty\)[/tex], [tex]\( (x+k)^{1/n} \)[/tex] produces values starting from 0 and increasing to infinity.
4. Because the radical function produces non-negative values, multiplying by [tex]\( a \)[/tex] keeps it non-negative if [tex]\( a \)[/tex] is positive. Adding [tex]\( c \)[/tex] shifts the entire range upwards by [tex]\( c \)[/tex]:
[tex]\[ f(x) = a(x+k)^{1/n} + c \quad \text{starts from} \quad c \quad \text{and goes to} \quad \infty \][/tex]
5. Thus, the range of the function is [tex]\([c, \infty)\)[/tex].
By analyzing both the domain and range, the correct answer is:
A. The domain is [tex]\([-k, \infty)\)[/tex], and the range is [tex]\([c, \infty)\)[/tex].
### Domain:
1. The domain of a function is the set of all possible input values (x-values) that the function can accept.
2. Here, we have a radical function with a fractional exponent [tex]\( (1/n) \)[/tex].
3. For even [tex]\( n \)[/tex], the expression inside the radical, [tex]\( (x+k) \)[/tex], must be non-negative because the even root of a negative number is not defined in the set of real numbers.
4. Therefore, for even [tex]\( n \)[/tex], the value of [tex]\( (x+k) \)[/tex] must be greater than or equal to 0:
[tex]\[ x + k \geq 0 \implies x \geq -k \][/tex]
5. Hence, for even [tex]\( n \)[/tex], the domain is [tex]\([-k, \infty)\)[/tex].
### Range:
1. The range of the function is the set of all possible output values (y-values) the function can produce.
2. Evaluate the function at the endpoint of the domain. When [tex]\( x = -k \)[/tex], the expression inside the radical becomes zero:
[tex]\[ f(-k) = a(0)^{1/n} + c = a \cdot 0 + c = c \][/tex]
3. As [tex]\( x \)[/tex] increases from [tex]\(-k\)[/tex] to [tex]\(\infty\)[/tex], [tex]\( (x+k)^{1/n} \)[/tex] produces values starting from 0 and increasing to infinity.
4. Because the radical function produces non-negative values, multiplying by [tex]\( a \)[/tex] keeps it non-negative if [tex]\( a \)[/tex] is positive. Adding [tex]\( c \)[/tex] shifts the entire range upwards by [tex]\( c \)[/tex]:
[tex]\[ f(x) = a(x+k)^{1/n} + c \quad \text{starts from} \quad c \quad \text{and goes to} \quad \infty \][/tex]
5. Thus, the range of the function is [tex]\([c, \infty)\)[/tex].
By analyzing both the domain and range, the correct answer is:
A. The domain is [tex]\([-k, \infty)\)[/tex], and the range is [tex]\([c, \infty)\)[/tex].
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.