Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Let's analyze the function [tex]\( f(x) = a(x+k)^{1/n} + c \)[/tex] in terms of its domain and range step-by-step.
### Domain:
1. The domain of a function is the set of all possible input values (x-values) that the function can accept.
2. Here, we have a radical function with a fractional exponent [tex]\( (1/n) \)[/tex].
3. For even [tex]\( n \)[/tex], the expression inside the radical, [tex]\( (x+k) \)[/tex], must be non-negative because the even root of a negative number is not defined in the set of real numbers.
4. Therefore, for even [tex]\( n \)[/tex], the value of [tex]\( (x+k) \)[/tex] must be greater than or equal to 0:
[tex]\[ x + k \geq 0 \implies x \geq -k \][/tex]
5. Hence, for even [tex]\( n \)[/tex], the domain is [tex]\([-k, \infty)\)[/tex].
### Range:
1. The range of the function is the set of all possible output values (y-values) the function can produce.
2. Evaluate the function at the endpoint of the domain. When [tex]\( x = -k \)[/tex], the expression inside the radical becomes zero:
[tex]\[ f(-k) = a(0)^{1/n} + c = a \cdot 0 + c = c \][/tex]
3. As [tex]\( x \)[/tex] increases from [tex]\(-k\)[/tex] to [tex]\(\infty\)[/tex], [tex]\( (x+k)^{1/n} \)[/tex] produces values starting from 0 and increasing to infinity.
4. Because the radical function produces non-negative values, multiplying by [tex]\( a \)[/tex] keeps it non-negative if [tex]\( a \)[/tex] is positive. Adding [tex]\( c \)[/tex] shifts the entire range upwards by [tex]\( c \)[/tex]:
[tex]\[ f(x) = a(x+k)^{1/n} + c \quad \text{starts from} \quad c \quad \text{and goes to} \quad \infty \][/tex]
5. Thus, the range of the function is [tex]\([c, \infty)\)[/tex].
By analyzing both the domain and range, the correct answer is:
A. The domain is [tex]\([-k, \infty)\)[/tex], and the range is [tex]\([c, \infty)\)[/tex].
### Domain:
1. The domain of a function is the set of all possible input values (x-values) that the function can accept.
2. Here, we have a radical function with a fractional exponent [tex]\( (1/n) \)[/tex].
3. For even [tex]\( n \)[/tex], the expression inside the radical, [tex]\( (x+k) \)[/tex], must be non-negative because the even root of a negative number is not defined in the set of real numbers.
4. Therefore, for even [tex]\( n \)[/tex], the value of [tex]\( (x+k) \)[/tex] must be greater than or equal to 0:
[tex]\[ x + k \geq 0 \implies x \geq -k \][/tex]
5. Hence, for even [tex]\( n \)[/tex], the domain is [tex]\([-k, \infty)\)[/tex].
### Range:
1. The range of the function is the set of all possible output values (y-values) the function can produce.
2. Evaluate the function at the endpoint of the domain. When [tex]\( x = -k \)[/tex], the expression inside the radical becomes zero:
[tex]\[ f(-k) = a(0)^{1/n} + c = a \cdot 0 + c = c \][/tex]
3. As [tex]\( x \)[/tex] increases from [tex]\(-k\)[/tex] to [tex]\(\infty\)[/tex], [tex]\( (x+k)^{1/n} \)[/tex] produces values starting from 0 and increasing to infinity.
4. Because the radical function produces non-negative values, multiplying by [tex]\( a \)[/tex] keeps it non-negative if [tex]\( a \)[/tex] is positive. Adding [tex]\( c \)[/tex] shifts the entire range upwards by [tex]\( c \)[/tex]:
[tex]\[ f(x) = a(x+k)^{1/n} + c \quad \text{starts from} \quad c \quad \text{and goes to} \quad \infty \][/tex]
5. Thus, the range of the function is [tex]\([c, \infty)\)[/tex].
By analyzing both the domain and range, the correct answer is:
A. The domain is [tex]\([-k, \infty)\)[/tex], and the range is [tex]\([c, \infty)\)[/tex].
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.