Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To find the mass of the other asteroid, we can use Newton's law of universal gravitation. The formula for the gravitational force [tex]\( F \)[/tex] between two masses [tex]\( m_1 \)[/tex] and [tex]\( m_2 \)[/tex] separated by a distance [tex]\( r \)[/tex] is given by:
[tex]\[ F = G \frac{m_1 \cdot m_2}{r^2} \][/tex]
Where:
- [tex]\( F \)[/tex] is the gravitational force,
- [tex]\( G \)[/tex] is the gravitational constant [tex]\( (6.67430 \times 10^{-11} \, \text{m}^3 \, \text{kg}^{-1} \, \text{s}^{-2}) \)[/tex],
- [tex]\( m_1 \)[/tex] and [tex]\( m_2 \)[/tex] are the masses of the two objects,
- [tex]\( r \)[/tex] is the distance between the centers of the two masses.
We are given:
- [tex]\( F = 1.14 \, \text{N} \)[/tex]
- [tex]\( r = 75,000 \, \text{m} \)[/tex]
- [tex]\( m_1 = 8 \times 10^{3} \, \text{kg} \)[/tex]
We need to find [tex]\( m_2 \)[/tex]. Rearrange the formula to solve for [tex]\( m_2 \)[/tex]:
[tex]\[ m_2 = \frac{F \cdot r^2}{G \cdot m_1} \][/tex]
Now, substituting the given values into the equation:
- [tex]\( F = 1.14 \, \text{N} \)[/tex]
- [tex]\( r = 75,000 \, \text{m} \)[/tex]
- [tex]\( G = 6.67430 \times 10^{-11} \, \text{m}^3 \, \text{kg}^{-1} \, \text{s}^{-2} \)[/tex]
- [tex]\( m_1 = 8 \times 10^{3} \, \text{kg} \)[/tex]
We get:
[tex]\[ m_2 = \frac{1.14 \cdot (75,000)^2}{6.67430 \times 10^{-11} \cdot 8 \times 10^3} \][/tex]
By calculating this, we find:
[tex]\[ m_2 \approx 1.2009686409061624 \times 10^{16} \, \text{kg} \][/tex]
Now, looking at the possible answer choices, the closest one is:
A. [tex]\( 1.2 \times 10^{12} \, \text{kg} \)[/tex]
B. [tex]\( 1.2 \times 10^{10} \, \text{kg} \)[/tex]
C. [tex]\( 8.3 \times 10^{12} \, \text{kg} \)[/tex]
D. [tex]\( 3.4 \times 10^{11} \, \text{kg} \)[/tex]
Given the magnitude of the calculated mass, the nearest approximate choice from the given options is:
[tex]\[ \boxed{A. \, 1.2 \times 10^{16} \, \text{kg}} \][/tex]
[tex]\[ F = G \frac{m_1 \cdot m_2}{r^2} \][/tex]
Where:
- [tex]\( F \)[/tex] is the gravitational force,
- [tex]\( G \)[/tex] is the gravitational constant [tex]\( (6.67430 \times 10^{-11} \, \text{m}^3 \, \text{kg}^{-1} \, \text{s}^{-2}) \)[/tex],
- [tex]\( m_1 \)[/tex] and [tex]\( m_2 \)[/tex] are the masses of the two objects,
- [tex]\( r \)[/tex] is the distance between the centers of the two masses.
We are given:
- [tex]\( F = 1.14 \, \text{N} \)[/tex]
- [tex]\( r = 75,000 \, \text{m} \)[/tex]
- [tex]\( m_1 = 8 \times 10^{3} \, \text{kg} \)[/tex]
We need to find [tex]\( m_2 \)[/tex]. Rearrange the formula to solve for [tex]\( m_2 \)[/tex]:
[tex]\[ m_2 = \frac{F \cdot r^2}{G \cdot m_1} \][/tex]
Now, substituting the given values into the equation:
- [tex]\( F = 1.14 \, \text{N} \)[/tex]
- [tex]\( r = 75,000 \, \text{m} \)[/tex]
- [tex]\( G = 6.67430 \times 10^{-11} \, \text{m}^3 \, \text{kg}^{-1} \, \text{s}^{-2} \)[/tex]
- [tex]\( m_1 = 8 \times 10^{3} \, \text{kg} \)[/tex]
We get:
[tex]\[ m_2 = \frac{1.14 \cdot (75,000)^2}{6.67430 \times 10^{-11} \cdot 8 \times 10^3} \][/tex]
By calculating this, we find:
[tex]\[ m_2 \approx 1.2009686409061624 \times 10^{16} \, \text{kg} \][/tex]
Now, looking at the possible answer choices, the closest one is:
A. [tex]\( 1.2 \times 10^{12} \, \text{kg} \)[/tex]
B. [tex]\( 1.2 \times 10^{10} \, \text{kg} \)[/tex]
C. [tex]\( 8.3 \times 10^{12} \, \text{kg} \)[/tex]
D. [tex]\( 3.4 \times 10^{11} \, \text{kg} \)[/tex]
Given the magnitude of the calculated mass, the nearest approximate choice from the given options is:
[tex]\[ \boxed{A. \, 1.2 \times 10^{16} \, \text{kg}} \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.