Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Sure! Let's solve the system of equations step-by-step:
[tex]\[ \left\{\begin{array}{c} 2x + y = 11 \\ y = x + 2 \\ \end{array}\right. \][/tex]
1. Substitute [tex]\( y \)[/tex] from the second equation into the first equation:
The second equation gives us:
[tex]\[ y = x + 2 \][/tex]
Substituting this expression for [tex]\( y \)[/tex] into the first equation:
[tex]\[ 2x + (x + 2) = 11 \][/tex]
2. Simplify and solve for [tex]\( x \)[/tex]:
Combine like terms:
[tex]\[ 2x + x + 2 = 11 \][/tex]
Simplify:
[tex]\[ 3x + 2 = 11 \][/tex]
Subtract 2 from both sides:
[tex]\[ 3x = 9 \][/tex]
Divide by 3:
[tex]\[ x = 3 \][/tex]
3. Substitute [tex]\( x = 3 \)[/tex] back into the second equation to find [tex]\( y \)[/tex]:
Using the second equation [tex]\( y = x + 2 \)[/tex]:
[tex]\[ y = 3 + 2 \][/tex]
Simplify:
[tex]\[ y = 5 \][/tex]
So, the solution to the system of equations is:
[tex]\[ x = 3, \quad y = 5 \][/tex]
Therefore, the solution to the given system of equations is [tex]\((x, y) = (3, 5)\)[/tex].
[tex]\[ \left\{\begin{array}{c} 2x + y = 11 \\ y = x + 2 \\ \end{array}\right. \][/tex]
1. Substitute [tex]\( y \)[/tex] from the second equation into the first equation:
The second equation gives us:
[tex]\[ y = x + 2 \][/tex]
Substituting this expression for [tex]\( y \)[/tex] into the first equation:
[tex]\[ 2x + (x + 2) = 11 \][/tex]
2. Simplify and solve for [tex]\( x \)[/tex]:
Combine like terms:
[tex]\[ 2x + x + 2 = 11 \][/tex]
Simplify:
[tex]\[ 3x + 2 = 11 \][/tex]
Subtract 2 from both sides:
[tex]\[ 3x = 9 \][/tex]
Divide by 3:
[tex]\[ x = 3 \][/tex]
3. Substitute [tex]\( x = 3 \)[/tex] back into the second equation to find [tex]\( y \)[/tex]:
Using the second equation [tex]\( y = x + 2 \)[/tex]:
[tex]\[ y = 3 + 2 \][/tex]
Simplify:
[tex]\[ y = 5 \][/tex]
So, the solution to the system of equations is:
[tex]\[ x = 3, \quad y = 5 \][/tex]
Therefore, the solution to the given system of equations is [tex]\((x, y) = (3, 5)\)[/tex].
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.