At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine which graph represents the equation [tex]\( y = -(x - 1)^2 + 1 \)[/tex], let's go through a step-by-step analysis.
### Step 1: Understand the Form of the Equation
The given equation is a quadratic equation in the form:
[tex]\[ y = a(x - h)^2 + k \][/tex]
where [tex]\( a = -1 \)[/tex], [tex]\( h = 1 \)[/tex], and [tex]\( k = 1 \)[/tex].
### Step 2: Identify the Vertex
The vertex of a parabola given by the equation [tex]\( y = a(x - h)^2 + k \)[/tex] is located at the point [tex]\( (h, k) \)[/tex].
Therefore, the vertex of the given equation [tex]\( y = -(x - 1)^2 + 1 \)[/tex] is at:
[tex]\[ (h, k) = (1, 1) \][/tex]
### Step 3: Determine the Direction of the Parabola
The coefficient [tex]\( a \)[/tex] in front of the squared term determines the direction in which the parabola opens:
- If [tex]\( a > 0 \)[/tex], the parabola opens upwards.
- If [tex]\( a < 0 \)[/tex], the parabola opens downwards.
Since [tex]\( a = -1 \)[/tex], which is less than 0, this parabola opens downwards.
### Step 4: Sketch and Analyze the Parabola
Based on the vertex and the direction, let's sketch the parabola:
- The vertex is at [tex]\( (1, 1) \)[/tex].
- The parabola opens downwards.
The general shape of this parabola would look like an inverted "U" shape centered at the vertex.
### Step 5: Confirm the Shape by Plugging in Values (Optional Check)
For additional confirmation, you can plug in a few values of [tex]\( x \)[/tex] to find corresponding values of [tex]\( y \)[/tex] and plot those points:
1. When [tex]\( x = 1 \)[/tex]:
[tex]\[ y = -(1 - 1)^2 + 1 = 1 \][/tex]
Point: [tex]\( (1, 1) \)[/tex]
2. When [tex]\( x = 0 \)[/tex]:
[tex]\[ y = -(0 - 1)^2 + 1 = -(1) + 1 = 0 \][/tex]
Point: [tex]\( (0, 0) \)[/tex]
3. When [tex]\( x = 2 \)[/tex]:
[tex]\[ y = -(2 - 1)^2 + 1 = -(1) + 1 = 0 \][/tex]
Point: [tex]\( (2, 0) \)[/tex]
4. When [tex]\( x = -1 \)[/tex]:
[tex]\[ y = -(-1 - 1)^2 + 1 = -4 + 1 = -3 \][/tex]
Point: [tex]\( (-1, -3) \)[/tex]
These points should lie on the parabola, and you can connect them to visualize its shape.
### Conclusion
The graph representing the equation [tex]\( y = -(x - 1)^2 + 1 \)[/tex] is a downward-opening parabola with its vertex located at [tex]\( (1, 1) \)[/tex]. It is symmetric around the vertical line [tex]\( x = 1 \)[/tex] and will intersect the [tex]\( y \)[/tex]-axis somewhere below the vertex.
### Step 1: Understand the Form of the Equation
The given equation is a quadratic equation in the form:
[tex]\[ y = a(x - h)^2 + k \][/tex]
where [tex]\( a = -1 \)[/tex], [tex]\( h = 1 \)[/tex], and [tex]\( k = 1 \)[/tex].
### Step 2: Identify the Vertex
The vertex of a parabola given by the equation [tex]\( y = a(x - h)^2 + k \)[/tex] is located at the point [tex]\( (h, k) \)[/tex].
Therefore, the vertex of the given equation [tex]\( y = -(x - 1)^2 + 1 \)[/tex] is at:
[tex]\[ (h, k) = (1, 1) \][/tex]
### Step 3: Determine the Direction of the Parabola
The coefficient [tex]\( a \)[/tex] in front of the squared term determines the direction in which the parabola opens:
- If [tex]\( a > 0 \)[/tex], the parabola opens upwards.
- If [tex]\( a < 0 \)[/tex], the parabola opens downwards.
Since [tex]\( a = -1 \)[/tex], which is less than 0, this parabola opens downwards.
### Step 4: Sketch and Analyze the Parabola
Based on the vertex and the direction, let's sketch the parabola:
- The vertex is at [tex]\( (1, 1) \)[/tex].
- The parabola opens downwards.
The general shape of this parabola would look like an inverted "U" shape centered at the vertex.
### Step 5: Confirm the Shape by Plugging in Values (Optional Check)
For additional confirmation, you can plug in a few values of [tex]\( x \)[/tex] to find corresponding values of [tex]\( y \)[/tex] and plot those points:
1. When [tex]\( x = 1 \)[/tex]:
[tex]\[ y = -(1 - 1)^2 + 1 = 1 \][/tex]
Point: [tex]\( (1, 1) \)[/tex]
2. When [tex]\( x = 0 \)[/tex]:
[tex]\[ y = -(0 - 1)^2 + 1 = -(1) + 1 = 0 \][/tex]
Point: [tex]\( (0, 0) \)[/tex]
3. When [tex]\( x = 2 \)[/tex]:
[tex]\[ y = -(2 - 1)^2 + 1 = -(1) + 1 = 0 \][/tex]
Point: [tex]\( (2, 0) \)[/tex]
4. When [tex]\( x = -1 \)[/tex]:
[tex]\[ y = -(-1 - 1)^2 + 1 = -4 + 1 = -3 \][/tex]
Point: [tex]\( (-1, -3) \)[/tex]
These points should lie on the parabola, and you can connect them to visualize its shape.
### Conclusion
The graph representing the equation [tex]\( y = -(x - 1)^2 + 1 \)[/tex] is a downward-opening parabola with its vertex located at [tex]\( (1, 1) \)[/tex]. It is symmetric around the vertical line [tex]\( x = 1 \)[/tex] and will intersect the [tex]\( y \)[/tex]-axis somewhere below the vertex.
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.