Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To find the focus and directrix of the parabola given by the equation [tex]\((x-5)^2 = 8(y-1)\)[/tex], follow these steps:
1. Identify the standard form:
The standard form of a parabola with a vertical axis is [tex]\((x-h)^2 = 4p(y-k)\)[/tex], where [tex]\((h, k)\)[/tex] represents the vertex of the parabola.
2. Extract the vertex:
Compare the given equation [tex]\((x-5)^2 = 8(y-1)\)[/tex] to the standard form [tex]\((x-h)^2 = 4p(y-k)\)[/tex]. Here, [tex]\(h\)[/tex] is 5 and [tex]\(k\)[/tex] is 1. Therefore, the vertex of the parabola is [tex]\((5, 1)\)[/tex].
3. Find the value of [tex]\(p\)[/tex]:
By comparing [tex]\((x-5)^2 = 8(y-1)\)[/tex] with [tex]\((x-h)^2 = 4p(y-k)\)[/tex], we can identify that [tex]\(4p\)[/tex] = 8. Solving for [tex]\(p\)[/tex], we get:
[tex]\[ 4p = 8 \implies p = 2 \][/tex]
4. Determine the focus:
The focus of the parabola with a vertical axis can be found using the coordinates [tex]\((h, k + p)\)[/tex]. Since [tex]\(h = 5\)[/tex], [tex]\(k = 1\)[/tex], and [tex]\(p = 2\)[/tex]:
[tex]\[ \text{Focus} = (5, 1 + 2) = (5, 3) \][/tex]
5. Determine the directrix:
The equation of the directrix for a parabola with a vertical axis is given by [tex]\(y = k - p\)[/tex]. Substituting [tex]\(k = 1\)[/tex] and [tex]\(p = 2\)[/tex]:
[tex]\[ \text{Directrix} = y = 1 - 2 = -1 \][/tex]
Thus, the focus and directrix of the given parabola [tex]\((x-5)^2 = 8(y-1)\)[/tex] are:
Focus: [tex]\((5, 3)\)[/tex]
Directrix: [tex]\(y = -1\)[/tex]
1. Identify the standard form:
The standard form of a parabola with a vertical axis is [tex]\((x-h)^2 = 4p(y-k)\)[/tex], where [tex]\((h, k)\)[/tex] represents the vertex of the parabola.
2. Extract the vertex:
Compare the given equation [tex]\((x-5)^2 = 8(y-1)\)[/tex] to the standard form [tex]\((x-h)^2 = 4p(y-k)\)[/tex]. Here, [tex]\(h\)[/tex] is 5 and [tex]\(k\)[/tex] is 1. Therefore, the vertex of the parabola is [tex]\((5, 1)\)[/tex].
3. Find the value of [tex]\(p\)[/tex]:
By comparing [tex]\((x-5)^2 = 8(y-1)\)[/tex] with [tex]\((x-h)^2 = 4p(y-k)\)[/tex], we can identify that [tex]\(4p\)[/tex] = 8. Solving for [tex]\(p\)[/tex], we get:
[tex]\[ 4p = 8 \implies p = 2 \][/tex]
4. Determine the focus:
The focus of the parabola with a vertical axis can be found using the coordinates [tex]\((h, k + p)\)[/tex]. Since [tex]\(h = 5\)[/tex], [tex]\(k = 1\)[/tex], and [tex]\(p = 2\)[/tex]:
[tex]\[ \text{Focus} = (5, 1 + 2) = (5, 3) \][/tex]
5. Determine the directrix:
The equation of the directrix for a parabola with a vertical axis is given by [tex]\(y = k - p\)[/tex]. Substituting [tex]\(k = 1\)[/tex] and [tex]\(p = 2\)[/tex]:
[tex]\[ \text{Directrix} = y = 1 - 2 = -1 \][/tex]
Thus, the focus and directrix of the given parabola [tex]\((x-5)^2 = 8(y-1)\)[/tex] are:
Focus: [tex]\((5, 3)\)[/tex]
Directrix: [tex]\(y = -1\)[/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.