Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Sure! To find the focus and the directrix of the parabola given by the equation [tex]\((x - 4)^2 = 16(y + 2)\)[/tex], we will follow these steps:
1. Identify the form of the equation:
The given equation is [tex]\((x - 4)^2 = 16(y + 2)\)[/tex].
2. Rewrite the equation to standard form:
The standard form of a parabola that opens vertically is [tex]\((x - h)^2 = 4p(y - k)\)[/tex], where [tex]\((h, k)\)[/tex] is the vertex, and [tex]\(p\)[/tex] is the distance from the vertex to the focus and the directrix.
3. Extract the values of [tex]\(h\)[/tex], [tex]\(k\)[/tex], and [tex]\(p\)[/tex]:
By comparing [tex]\((x - 4)^2 = 16(y + 2)\)[/tex] to [tex]\((x - h)^2 = 4p(y - k)\)[/tex],
- [tex]\(h = 4\)[/tex],
- [tex]\(k = -2\)[/tex],
- [tex]\(4p = 16\)[/tex].
Solving for [tex]\(p\)[/tex], we get [tex]\(p = \frac{16}{4} = 4\)[/tex].
4. Determine the focus:
The focus of a parabola that opens vertically is located at [tex]\((h, k + p)\)[/tex].
- Substituting [tex]\(h = 4\)[/tex], [tex]\(k = -2\)[/tex], and [tex]\(p = 4\)[/tex],
the coordinates of the focus are [tex]\((4, -2 + 4) = (4, 2)\)[/tex].
5. Determine the directrix:
The directrix of a parabola that opens vertically is given by the line [tex]\(y = k - p\)[/tex].
- Substituting [tex]\(k = -2\)[/tex] and [tex]\(p = 4\)[/tex],
the equation of the directrix is [tex]\(y = -2 - 4 = -6\)[/tex].
Thus, the focus of the parabola [tex]\((x - 4)^2 = 16(y + 2)\)[/tex] is [tex]\((4, 2)\)[/tex], and the directrix is [tex]\(y = -6\)[/tex].
Final answers:
- Focus: [tex]\((4, 2)\)[/tex]
- Directrix: [tex]\(y = -6\)[/tex]
1. Identify the form of the equation:
The given equation is [tex]\((x - 4)^2 = 16(y + 2)\)[/tex].
2. Rewrite the equation to standard form:
The standard form of a parabola that opens vertically is [tex]\((x - h)^2 = 4p(y - k)\)[/tex], where [tex]\((h, k)\)[/tex] is the vertex, and [tex]\(p\)[/tex] is the distance from the vertex to the focus and the directrix.
3. Extract the values of [tex]\(h\)[/tex], [tex]\(k\)[/tex], and [tex]\(p\)[/tex]:
By comparing [tex]\((x - 4)^2 = 16(y + 2)\)[/tex] to [tex]\((x - h)^2 = 4p(y - k)\)[/tex],
- [tex]\(h = 4\)[/tex],
- [tex]\(k = -2\)[/tex],
- [tex]\(4p = 16\)[/tex].
Solving for [tex]\(p\)[/tex], we get [tex]\(p = \frac{16}{4} = 4\)[/tex].
4. Determine the focus:
The focus of a parabola that opens vertically is located at [tex]\((h, k + p)\)[/tex].
- Substituting [tex]\(h = 4\)[/tex], [tex]\(k = -2\)[/tex], and [tex]\(p = 4\)[/tex],
the coordinates of the focus are [tex]\((4, -2 + 4) = (4, 2)\)[/tex].
5. Determine the directrix:
The directrix of a parabola that opens vertically is given by the line [tex]\(y = k - p\)[/tex].
- Substituting [tex]\(k = -2\)[/tex] and [tex]\(p = 4\)[/tex],
the equation of the directrix is [tex]\(y = -2 - 4 = -6\)[/tex].
Thus, the focus of the parabola [tex]\((x - 4)^2 = 16(y + 2)\)[/tex] is [tex]\((4, 2)\)[/tex], and the directrix is [tex]\(y = -6\)[/tex].
Final answers:
- Focus: [tex]\((4, 2)\)[/tex]
- Directrix: [tex]\(y = -6\)[/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.