Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Sure, let's break it down step-by-step to understand how the total molar concentration of ions in a [tex]$0.750 M$[/tex] solution of potassium carbonate ([tex]$K_2CO_3$[/tex]) can be calculated, assuming complete dissociation.
1. Dissociation Equation:
The dissociation of potassium carbonate in water can be represented as:
[tex]\[ K_2CO_3 (s) \rightarrow 2K^+ (aq) + CO_3^{2-} (aq) \][/tex]
This means that one mole of [tex]$K_2CO_3$[/tex] dissociates into two moles of [tex]$K^+$[/tex] (potassium ions) and one mole of [tex]$CO_3^{2-}$[/tex] (carbonate ions).
2. Initial Molar Concentration:
The molar concentration of the [tex]$K_2CO_3$[/tex] solution is given as [tex]$0.750 M$[/tex]. This means that there are [tex]$0.750$[/tex] moles of [tex]$K_2CO_3$[/tex] in one liter of solution.
3. Moles of Ions Produced:
- For each mole of [tex]$K_2CO_3$[/tex], we get:
- [tex]$2$[/tex] moles of [tex]$K^+$[/tex] ions
- [tex]$1$[/tex] mole of [tex]$CO_3^{2-}$[/tex] ions
- Therefore, in a [tex]$0.750 M$[/tex] solution:
- The moles of [tex]$K^+$[/tex] ions produced will be [tex]$2 \times 0.750 = 1.5$[/tex] moles.
- The moles of [tex]$CO_3^{2-}$[/tex] ions produced will be [tex]$0.750$[/tex] moles.
4. Total Moles of Ions:
To find the total moles of ions, we sum the moles of [tex]$K^+$[/tex] and [tex]$CO_3^{2-}$[/tex] ions:
[tex]\[ \text{Total moles of ions} = 1.5 \text{ moles of } K^+ + 0.750 \text{ moles of } CO_3^{2-} = 2.25 \text{ moles} \][/tex]
5. Total Molar Concentration of Ions:
Since the initial molar concentration of [tex]$K_2CO_3$[/tex] is [tex]$0.750 M$[/tex], the total molar concentration of ions in the solution will be:
[tex]\[ \text{Total molar concentration of ions} = 2.25 M \][/tex]
So, in a [tex]$0.750 M$[/tex] solution of [tex]$K_2CO_3$[/tex], assuming complete dissociation, the total molar concentration of ions is [tex]$2.25 M$[/tex].
1. Dissociation Equation:
The dissociation of potassium carbonate in water can be represented as:
[tex]\[ K_2CO_3 (s) \rightarrow 2K^+ (aq) + CO_3^{2-} (aq) \][/tex]
This means that one mole of [tex]$K_2CO_3$[/tex] dissociates into two moles of [tex]$K^+$[/tex] (potassium ions) and one mole of [tex]$CO_3^{2-}$[/tex] (carbonate ions).
2. Initial Molar Concentration:
The molar concentration of the [tex]$K_2CO_3$[/tex] solution is given as [tex]$0.750 M$[/tex]. This means that there are [tex]$0.750$[/tex] moles of [tex]$K_2CO_3$[/tex] in one liter of solution.
3. Moles of Ions Produced:
- For each mole of [tex]$K_2CO_3$[/tex], we get:
- [tex]$2$[/tex] moles of [tex]$K^+$[/tex] ions
- [tex]$1$[/tex] mole of [tex]$CO_3^{2-}$[/tex] ions
- Therefore, in a [tex]$0.750 M$[/tex] solution:
- The moles of [tex]$K^+$[/tex] ions produced will be [tex]$2 \times 0.750 = 1.5$[/tex] moles.
- The moles of [tex]$CO_3^{2-}$[/tex] ions produced will be [tex]$0.750$[/tex] moles.
4. Total Moles of Ions:
To find the total moles of ions, we sum the moles of [tex]$K^+$[/tex] and [tex]$CO_3^{2-}$[/tex] ions:
[tex]\[ \text{Total moles of ions} = 1.5 \text{ moles of } K^+ + 0.750 \text{ moles of } CO_3^{2-} = 2.25 \text{ moles} \][/tex]
5. Total Molar Concentration of Ions:
Since the initial molar concentration of [tex]$K_2CO_3$[/tex] is [tex]$0.750 M$[/tex], the total molar concentration of ions in the solution will be:
[tex]\[ \text{Total molar concentration of ions} = 2.25 M \][/tex]
So, in a [tex]$0.750 M$[/tex] solution of [tex]$K_2CO_3$[/tex], assuming complete dissociation, the total molar concentration of ions is [tex]$2.25 M$[/tex].
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.