At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine the original coordinates of [tex]\( Q \)[/tex] given its transformed coordinates [tex]\( Q'(-3, 4) \)[/tex] under the rule [tex]\( R_{0,90^{\circ}} \)[/tex], let's carefully follow these steps:
1. Understand the Transformation Rule:
The rule [tex]\( R_{0,90^{\circ}} \)[/tex] indicates a rotation of 90 degrees counterclockwise around the origin.
2. Inverse Transformation:
To find the original coordinates before the rotation, we perform the inverse of 90 degrees counterclockwise rotation, which is a 90-degree clockwise rotation.
3. Apply the Inverse Rotation:
- When a point [tex]\( (Q'_x, Q'_y) \)[/tex] is rotated 90 degrees clockwise, the new coordinates [tex]\( (Q_x, Q_y) \)[/tex] are calculated as follows:
[tex]\[ Q_x = Q'_y \][/tex]
[tex]\[ Q_y = -Q'_x \][/tex]
4. Given Coordinates of [tex]\( Q' \)[/tex]:
The coordinates of [tex]\( Q' \)[/tex] are [tex]\( (-3, 4) \)[/tex]. Let's substitute these values into the inverse rotation formulas:
[tex]\[ Q_x = Q'_y = 4 \][/tex]
[tex]\[ Q_y = -Q'_x = -(-3) = 3 \][/tex]
5. Determine the Coordinates:
Therefore, the coordinates of [tex]\( Q \)[/tex] are [tex]\( (4, 3) \)[/tex].
Hence, the location of [tex]\( Q \)[/tex] is [tex]\( (4, 3) \)[/tex].
The correct answer is:
[tex]\[ (4, 3) \][/tex]
1. Understand the Transformation Rule:
The rule [tex]\( R_{0,90^{\circ}} \)[/tex] indicates a rotation of 90 degrees counterclockwise around the origin.
2. Inverse Transformation:
To find the original coordinates before the rotation, we perform the inverse of 90 degrees counterclockwise rotation, which is a 90-degree clockwise rotation.
3. Apply the Inverse Rotation:
- When a point [tex]\( (Q'_x, Q'_y) \)[/tex] is rotated 90 degrees clockwise, the new coordinates [tex]\( (Q_x, Q_y) \)[/tex] are calculated as follows:
[tex]\[ Q_x = Q'_y \][/tex]
[tex]\[ Q_y = -Q'_x \][/tex]
4. Given Coordinates of [tex]\( Q' \)[/tex]:
The coordinates of [tex]\( Q' \)[/tex] are [tex]\( (-3, 4) \)[/tex]. Let's substitute these values into the inverse rotation formulas:
[tex]\[ Q_x = Q'_y = 4 \][/tex]
[tex]\[ Q_y = -Q'_x = -(-3) = 3 \][/tex]
5. Determine the Coordinates:
Therefore, the coordinates of [tex]\( Q \)[/tex] are [tex]\( (4, 3) \)[/tex].
Hence, the location of [tex]\( Q \)[/tex] is [tex]\( (4, 3) \)[/tex].
The correct answer is:
[tex]\[ (4, 3) \][/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.