Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Get quick and reliable solutions to your questions from knowledgeable professionals on our comprehensive Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Given the line equation [tex]\( y = 3x - 4 \)[/tex], we need to find the equation of a line that is perpendicular to it and passes through the point [tex]\( (2, 1) \)[/tex].
1. Determine the slope of the given line:
- The given line [tex]\( y = 3x - 4 \)[/tex] is in the slope-intercept form [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] is the slope.
- The slope [tex]\( m \)[/tex] of the given line is 3.
2. Find the slope of the perpendicular line:
- The slope of a line perpendicular to another line is the negative reciprocal of the original line's slope.
- Therefore, the slope of the perpendicular line is [tex]\( -\frac{1}{3} \)[/tex].
3. Use the point-slope form of the line equation:
- The point-slope form of a line is [tex]\( y - y_1 = m(x - x_1) \)[/tex], where [tex]\( (x_1, y_1) \)[/tex] is a point on the line and [tex]\( m \)[/tex] is the slope.
- We have the point [tex]\( (2, 1) \)[/tex] and the slope [tex]\( -\frac{1}{3} \)[/tex].
- Substituting these into the point-slope form:
[tex]\[ y - 1 = -\frac{1}{3}(x - 2) \][/tex]
4. Simplify the equation:
- Distribute the slope on the right side:
[tex]\[ y - 1 = -\frac{1}{3} x + \frac{2}{3} \][/tex]
- Add 1 to both sides to isolate [tex]\( y \)[/tex]:
[tex]\[ y = -\frac{1}{3} x + \frac{2}{3} + 1 \][/tex]
- Combine the constant terms:
[tex]\[ y = -\frac{1}{3} x + \frac{2}{3} + \frac{3}{3} \][/tex]
[tex]\[ y = -\frac{1}{3} x + \frac{5}{3} \][/tex]
Therefore, the equation of the line that is perpendicular to the given line and passes through the point [tex]\( (2, 1) \)[/tex] is [tex]\[ y = -\frac{1}{3}x + \frac{5}{3} \][/tex].
The correct answer is:
[tex]\[ \text{B. } y = -\frac{1}{3}x + \frac{5}{3} \][/tex]
1. Determine the slope of the given line:
- The given line [tex]\( y = 3x - 4 \)[/tex] is in the slope-intercept form [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] is the slope.
- The slope [tex]\( m \)[/tex] of the given line is 3.
2. Find the slope of the perpendicular line:
- The slope of a line perpendicular to another line is the negative reciprocal of the original line's slope.
- Therefore, the slope of the perpendicular line is [tex]\( -\frac{1}{3} \)[/tex].
3. Use the point-slope form of the line equation:
- The point-slope form of a line is [tex]\( y - y_1 = m(x - x_1) \)[/tex], where [tex]\( (x_1, y_1) \)[/tex] is a point on the line and [tex]\( m \)[/tex] is the slope.
- We have the point [tex]\( (2, 1) \)[/tex] and the slope [tex]\( -\frac{1}{3} \)[/tex].
- Substituting these into the point-slope form:
[tex]\[ y - 1 = -\frac{1}{3}(x - 2) \][/tex]
4. Simplify the equation:
- Distribute the slope on the right side:
[tex]\[ y - 1 = -\frac{1}{3} x + \frac{2}{3} \][/tex]
- Add 1 to both sides to isolate [tex]\( y \)[/tex]:
[tex]\[ y = -\frac{1}{3} x + \frac{2}{3} + 1 \][/tex]
- Combine the constant terms:
[tex]\[ y = -\frac{1}{3} x + \frac{2}{3} + \frac{3}{3} \][/tex]
[tex]\[ y = -\frac{1}{3} x + \frac{5}{3} \][/tex]
Therefore, the equation of the line that is perpendicular to the given line and passes through the point [tex]\( (2, 1) \)[/tex] is [tex]\[ y = -\frac{1}{3}x + \frac{5}{3} \][/tex].
The correct answer is:
[tex]\[ \text{B. } y = -\frac{1}{3}x + \frac{5}{3} \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.