Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.

Use the information provided to calculate the diameter of the supermassive black hole at the center of the Milky Way galaxy, assuming it is spherical.

- The volume of a sphere is given by [tex]\frac{4}{3} \pi r^3[/tex], where [tex]r[/tex] is the radius.
- The mass of the Sun is [tex]2 \times 10^{30} \text{ kg}[/tex].
- The density of water is [tex]1000 \text{ kg/m}^3[/tex].
- The mass of the black hole is [tex]4.3 \times 10^6[/tex] times the mass of the Sun.
- The density of the black hole is 1000 times that of water.

Calculate the diameter of the black hole in metres and give your answer in standard form to 3 significant figures.


Sagot :

To calculate the diameter of the supermassive black hole at the center of the Milky Way galaxy, we need to follow these steps:

1. Determine the mass of the black hole:
[tex]\[ \text{mass of the black hole} = 4.3 \times 10^6 \times \text{mass of the Sun} \][/tex]
Given the mass of the Sun [tex]\( = 2 \times 10^{30} \, \text{kg} \)[/tex],
[tex]\[ \text{mass of the black hole} = 4.3 \times 10^6 \times 2 \times 10^{30} \, \text{kg} \][/tex]
[tex]\[ \text{mass of the black hole} = 8.6 \times 10^{36} \, \text{kg} \][/tex]

2. Determine the density of the black hole:
The density of the black hole is given as 1000 times the density of water.
[tex]\[ \text{density of the black hole} = 1000 \times \text{density of water} \][/tex]
Given the density of water [tex]\( = 1000 \, \text{kg/m}^3 \)[/tex],
[tex]\[ \text{density of the black hole} = 1000 \times 1000 \, \text{kg/m}^3 \][/tex]
[tex]\[ \text{density of the black hole} = 10^6 \, \text{kg/m}^3 \][/tex]

3. Calculate the volume of the black hole:
Using the formula for the volume of a sphere [tex]\(V = \frac{4}{3} \pi r^3\)[/tex], and knowing that density [tex]\(\rho = \frac{mass}{volume}\)[/tex],
[tex]\[ \text{volume of the black hole} = \frac{\text{mass of the black hole}}{\text{density of the black hole}} \][/tex]
[tex]\[ \text{volume of the black hole} = \frac{8.6 \times 10^{36} \, \text{kg}}{10^6 \, \text{kg/m}^3} \][/tex]
[tex]\[ \text{volume of the black hole} = 8.6 \times 10^{30} \, \text{m}^3 \][/tex]

4. Calculate the radius of the black hole:
Given [tex]\(V = \frac{4}{3} \pi r^3\)[/tex], we need to solve for [tex]\(r\)[/tex]:
[tex]\[ r^3 = \frac{3V}{4\pi} \][/tex]
Plugging in the volume:
[tex]\[ r^3 = \frac{3 \times 8.6 \times 10^{30}}{4\pi} \][/tex]
Evaluating this,
[tex]\[ r^3 \approx 2.049 \times 10^{30} \, \text{m}^3 \][/tex]
Taking the cube root to find [tex]\(r\)[/tex],
[tex]\[ r \approx 1.2709738466 \times 10^{10} \, \text{m} \][/tex]

5. Calculate the diameter of the black hole:
The diameter [tex]\(d\)[/tex] is twice the radius:
[tex]\[ d = 2r \][/tex]
[tex]\[ d \approx 2 \times 1.2709738466 \times 10^{10} \, \text{m} \][/tex]
[tex]\[ d \approx 2.5419476932 \times 10^{10} \, \text{m} \][/tex]

6. Round to 3 significant figures in standard form:
[tex]\[ d \approx 2.54 \times 10^{10} \, \text{m} \][/tex]

So, the diameter of the supermassive black hole at the center of the Milky Way galaxy is approximately [tex]\(2.54 \times 10^{10} \, \text{m}\)[/tex] in standard form to 3 significant figures.
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.