Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Certainly! Let's begin by isolating [tex]\( J \)[/tex] in the equation [tex]\( T = \frac{1}{2AJ^2} + \text{trs} \)[/tex].
1. Start with the given equation:
[tex]\[ T = \frac{1}{2A J^2} + \text{trs} \][/tex]
2. Subtract [tex]\(\text{trs}\)[/tex] from both sides to isolate the term involving [tex]\( J \)[/tex]:
[tex]\[ T - \text{trs} = \frac{1}{2A J^2} \][/tex]
3. Now, we want to get rid of the fraction. Multiply both sides by [tex]\( 2A J^2 \)[/tex] to clear the denominator:
[tex]\[ (T - \text{trs})(2A J^2) = 1 \][/tex]
4. Divide both sides by [tex]\( 2A (T - \text{trs}) \)[/tex] to isolate [tex]\( J^2 \)[/tex]:
[tex]\[ J^2 = \frac{1}{2A (T - \text{trs})} \][/tex]
5. Finally, take the square root of both sides to solve for [tex]\( J \)[/tex]:
[tex]\[ J = \pm\sqrt{\frac{1}{2A (T - \text{trs})}} \][/tex]
As a result, we have two solutions for [tex]\( J \)[/tex]:
[tex]\[ J = -\sqrt{\frac{1}{2A (T - \text{trs})}} \][/tex]
[tex]\[ J = \sqrt{\frac{1}{2A (T - \text{trs})}} \][/tex]
1. Start with the given equation:
[tex]\[ T = \frac{1}{2A J^2} + \text{trs} \][/tex]
2. Subtract [tex]\(\text{trs}\)[/tex] from both sides to isolate the term involving [tex]\( J \)[/tex]:
[tex]\[ T - \text{trs} = \frac{1}{2A J^2} \][/tex]
3. Now, we want to get rid of the fraction. Multiply both sides by [tex]\( 2A J^2 \)[/tex] to clear the denominator:
[tex]\[ (T - \text{trs})(2A J^2) = 1 \][/tex]
4. Divide both sides by [tex]\( 2A (T - \text{trs}) \)[/tex] to isolate [tex]\( J^2 \)[/tex]:
[tex]\[ J^2 = \frac{1}{2A (T - \text{trs})} \][/tex]
5. Finally, take the square root of both sides to solve for [tex]\( J \)[/tex]:
[tex]\[ J = \pm\sqrt{\frac{1}{2A (T - \text{trs})}} \][/tex]
As a result, we have two solutions for [tex]\( J \)[/tex]:
[tex]\[ J = -\sqrt{\frac{1}{2A (T - \text{trs})}} \][/tex]
[tex]\[ J = \sqrt{\frac{1}{2A (T - \text{trs})}} \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.