Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Let's carefully analyze the problem step-by-step:
1. Understanding the initial equation of the circle: The given equation of the circle is [tex]\((x-1)^2 + (y-4)^2 = 16\)[/tex].
- This equation represents a circle where the center is at [tex]\((1, 4)\)[/tex] and the radius is 4 (since [tex]\( \sqrt{16} = 4 \)[/tex]).
2. Shifting the circle to the right by 4 units:
- When a geometric figure is shifted to the right by [tex]\(k\)[/tex] units, the [tex]\(x\)[/tex]-coordinates of all points on the figure increase by [tex]\(k\)[/tex] units, while the [tex]\(y\)[/tex]-coordinates remain unchanged.
- Therefore, if we shift our circle to the right by 4 units, the [tex]\(x\)[/tex]-coordinate of the center will increase by 4 units, and the [tex]\(y\)[/tex]-coordinate will remain the same.
3. Calculating the new center:
- The original center of the circle is at [tex]\((1, 4)\)[/tex].
- After shifting to the right by 4 units, the new [tex]\(x\)[/tex]-coordinate will be [tex]\(1 + 4 = 5\)[/tex].
- The [tex]\(y\)[/tex]-coordinate remains unchanged, so it will stay as 4.
Thus, the new center of the circle after the shift is [tex]\((5, 4)\)[/tex].
4. Identifying the correct option:
- Based on our new center [tex]\((5, 4)\)[/tex], we can see that:
- The [tex]\(x\)[/tex]-coordinate of the center has increased by 4 (from 1 to 5).
- The [tex]\(y\)[/tex]-coordinate of the center remains the same.
Hence, the correct answer is:
A. The [tex]\(x\)[/tex]-coordinate of the center of the circle increases by 4.
1. Understanding the initial equation of the circle: The given equation of the circle is [tex]\((x-1)^2 + (y-4)^2 = 16\)[/tex].
- This equation represents a circle where the center is at [tex]\((1, 4)\)[/tex] and the radius is 4 (since [tex]\( \sqrt{16} = 4 \)[/tex]).
2. Shifting the circle to the right by 4 units:
- When a geometric figure is shifted to the right by [tex]\(k\)[/tex] units, the [tex]\(x\)[/tex]-coordinates of all points on the figure increase by [tex]\(k\)[/tex] units, while the [tex]\(y\)[/tex]-coordinates remain unchanged.
- Therefore, if we shift our circle to the right by 4 units, the [tex]\(x\)[/tex]-coordinate of the center will increase by 4 units, and the [tex]\(y\)[/tex]-coordinate will remain the same.
3. Calculating the new center:
- The original center of the circle is at [tex]\((1, 4)\)[/tex].
- After shifting to the right by 4 units, the new [tex]\(x\)[/tex]-coordinate will be [tex]\(1 + 4 = 5\)[/tex].
- The [tex]\(y\)[/tex]-coordinate remains unchanged, so it will stay as 4.
Thus, the new center of the circle after the shift is [tex]\((5, 4)\)[/tex].
4. Identifying the correct option:
- Based on our new center [tex]\((5, 4)\)[/tex], we can see that:
- The [tex]\(x\)[/tex]-coordinate of the center has increased by 4 (from 1 to 5).
- The [tex]\(y\)[/tex]-coordinate of the center remains the same.
Hence, the correct answer is:
A. The [tex]\(x\)[/tex]-coordinate of the center of the circle increases by 4.
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.