Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Let's carefully analyze the situation to determine the correct statement.
First, let's understand the partition ratio. We are given that point [tex]\( P \)[/tex] partitions the directed line segment from [tex]\( A \)[/tex] to [tex]\( B \)[/tex] in the ratio [tex]\( 3:4 \)[/tex]. This means the segment from [tex]\( A \)[/tex] to [tex]\( P \)[/tex] is 3 parts long, and the segment from [tex]\( P \)[/tex] to [tex]\( B \)[/tex] is 4 parts long.
Next, let's calculate the fractions of the total distance from [tex]\( A \)[/tex] to [tex]\( B \)[/tex] that [tex]\( P \)[/tex] is away from [tex]\( A \)[/tex] and [tex]\( B \)[/tex].
The total number of parts from [tex]\( A \)[/tex] to [tex]\( B \)[/tex] is:
[tex]\[ 3 + 4 = 7 \text{ parts} \][/tex]
The fraction of the distance from [tex]\( A \)[/tex] to [tex]\( P \)[/tex] relative to the total distance from [tex]\( A \)[/tex] to [tex]\( B \)[/tex] is:
[tex]\[ \frac{3}{7} \][/tex]
The fraction of the distance from [tex]\( P \)[/tex] to [tex]\( B \)[/tex] relative to the total distance from [tex]\( A \)[/tex] to [tex]\( B \)[/tex] is:
[tex]\[ \frac{4}{7} \][/tex]
Now, let's compare these distances:
- The distance from [tex]\( A \)[/tex] to [tex]\( P \)[/tex] is [tex]\( \frac{3}{7} \)[/tex] of the total distance.
- The distance from [tex]\( P \)[/tex] to [tex]\( B \)[/tex] is [tex]\( \frac{4}{7} \)[/tex] of the total distance.
Since [tex]\( \frac{3}{7} \approx 0.4286 \)[/tex] and [tex]\( \frac{4}{7} \approx 0.5714 \)[/tex], we see that [tex]\( \frac{3}{7} \)[/tex] is less than [tex]\( \frac{4}{7} \)[/tex]. Therefore, [tex]\( P \)[/tex] is closer to [tex]\( A \)[/tex] than to [tex]\( B \)[/tex].
So, the correct statement is:
[tex]\( P \)[/tex] will be closer to [tex]\( A \)[/tex] because it will be [tex]\( \frac{3}{7} \)[/tex] the distance from [tex]\( A \)[/tex] to [tex]\( B \)[/tex].
First, let's understand the partition ratio. We are given that point [tex]\( P \)[/tex] partitions the directed line segment from [tex]\( A \)[/tex] to [tex]\( B \)[/tex] in the ratio [tex]\( 3:4 \)[/tex]. This means the segment from [tex]\( A \)[/tex] to [tex]\( P \)[/tex] is 3 parts long, and the segment from [tex]\( P \)[/tex] to [tex]\( B \)[/tex] is 4 parts long.
Next, let's calculate the fractions of the total distance from [tex]\( A \)[/tex] to [tex]\( B \)[/tex] that [tex]\( P \)[/tex] is away from [tex]\( A \)[/tex] and [tex]\( B \)[/tex].
The total number of parts from [tex]\( A \)[/tex] to [tex]\( B \)[/tex] is:
[tex]\[ 3 + 4 = 7 \text{ parts} \][/tex]
The fraction of the distance from [tex]\( A \)[/tex] to [tex]\( P \)[/tex] relative to the total distance from [tex]\( A \)[/tex] to [tex]\( B \)[/tex] is:
[tex]\[ \frac{3}{7} \][/tex]
The fraction of the distance from [tex]\( P \)[/tex] to [tex]\( B \)[/tex] relative to the total distance from [tex]\( A \)[/tex] to [tex]\( B \)[/tex] is:
[tex]\[ \frac{4}{7} \][/tex]
Now, let's compare these distances:
- The distance from [tex]\( A \)[/tex] to [tex]\( P \)[/tex] is [tex]\( \frac{3}{7} \)[/tex] of the total distance.
- The distance from [tex]\( P \)[/tex] to [tex]\( B \)[/tex] is [tex]\( \frac{4}{7} \)[/tex] of the total distance.
Since [tex]\( \frac{3}{7} \approx 0.4286 \)[/tex] and [tex]\( \frac{4}{7} \approx 0.5714 \)[/tex], we see that [tex]\( \frac{3}{7} \)[/tex] is less than [tex]\( \frac{4}{7} \)[/tex]. Therefore, [tex]\( P \)[/tex] is closer to [tex]\( A \)[/tex] than to [tex]\( B \)[/tex].
So, the correct statement is:
[tex]\( P \)[/tex] will be closer to [tex]\( A \)[/tex] because it will be [tex]\( \frac{3}{7} \)[/tex] the distance from [tex]\( A \)[/tex] to [tex]\( B \)[/tex].
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.