Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Of course! To determine the total number of leaves on the tree, we'll be working with two given polynomials:
1. The number of branches on the tree, [tex]\( b(y) = 4y^2 + y \)[/tex]
2. The number of leaves on each branch, [tex]\( l(y) = 2y^3 + 3y^2 + y \)[/tex]
To find the total number of leaves on the tree, we need to multiply the polynomial representing the number of branches by the polynomial representing the number of leaves per branch. In other words, we need to compute:
[tex]\[ \text{Total leaves} = (4y^2 + y) \times (2y^3 + 3y^2 + y) \][/tex]
Let's break this multiplication down step-by-step:
1. Distribute [tex]\( 4y^2 \)[/tex] to each term in [tex]\( l(y) \)[/tex]:
[tex]\[ 4y^2 \times (2y^3 + 3y^2 + y) = 4y^2 \times 2y^3 + 4y^2 \times 3y^2 + 4y^2 \times y \][/tex]
This results in:
[tex]\[ 4y^2 \times 2y^3 = 8y^5 \][/tex]
[tex]\[ 4y^2 \times 3y^2 = 12y^4 \][/tex]
[tex]\[ 4y^2 \times y = 4y^3 \][/tex]
2. Next, distribute [tex]\( y \)[/tex] to each term in [tex]\( l(y) \)[/tex]:
[tex]\[ y \times (2y^3 + 3y^2 + y) = y \times 2y^3 + y \times 3y^2 + y \times y \][/tex]
This results in:
[tex]\[ y \times 2y^3 = 2y^4 \][/tex]
[tex]\[ y \times 3y^2 = 3y^3 \][/tex]
[tex]\[ y \times y = y^2 \][/tex]
3. Combine all these terms together:
[tex]\[ 8y^5 + 12y^4 + 4y^3 + 2y^4 + 3y^3 + y^2 \][/tex]
Next, we combine like terms in the resulting polynomial:
- The [tex]\( y^5 \)[/tex] term is: [tex]\( 8y^5 \)[/tex]
- Combine the [tex]\( y^4 \)[/tex] terms: [tex]\( 12y^4 + 2y^4 = 14y^4 \)[/tex]
- Combine the [tex]\( y^3 \)[/tex] terms: [tex]\( 4y^3 + 3y^3 = 7y^3 \)[/tex]
- The [tex]\( y^2 \)[/tex] term is: [tex]\( y^2 \)[/tex]
So, the final polynomial describing the total number of leaves on the tree is:
[tex]\[ 8y^5 + 14y^4 + 7y^3 + y^2 \][/tex]
This polynomial represents the total number of leaves on the tree as a function of [tex]\( y \)[/tex].
1. The number of branches on the tree, [tex]\( b(y) = 4y^2 + y \)[/tex]
2. The number of leaves on each branch, [tex]\( l(y) = 2y^3 + 3y^2 + y \)[/tex]
To find the total number of leaves on the tree, we need to multiply the polynomial representing the number of branches by the polynomial representing the number of leaves per branch. In other words, we need to compute:
[tex]\[ \text{Total leaves} = (4y^2 + y) \times (2y^3 + 3y^2 + y) \][/tex]
Let's break this multiplication down step-by-step:
1. Distribute [tex]\( 4y^2 \)[/tex] to each term in [tex]\( l(y) \)[/tex]:
[tex]\[ 4y^2 \times (2y^3 + 3y^2 + y) = 4y^2 \times 2y^3 + 4y^2 \times 3y^2 + 4y^2 \times y \][/tex]
This results in:
[tex]\[ 4y^2 \times 2y^3 = 8y^5 \][/tex]
[tex]\[ 4y^2 \times 3y^2 = 12y^4 \][/tex]
[tex]\[ 4y^2 \times y = 4y^3 \][/tex]
2. Next, distribute [tex]\( y \)[/tex] to each term in [tex]\( l(y) \)[/tex]:
[tex]\[ y \times (2y^3 + 3y^2 + y) = y \times 2y^3 + y \times 3y^2 + y \times y \][/tex]
This results in:
[tex]\[ y \times 2y^3 = 2y^4 \][/tex]
[tex]\[ y \times 3y^2 = 3y^3 \][/tex]
[tex]\[ y \times y = y^2 \][/tex]
3. Combine all these terms together:
[tex]\[ 8y^5 + 12y^4 + 4y^3 + 2y^4 + 3y^3 + y^2 \][/tex]
Next, we combine like terms in the resulting polynomial:
- The [tex]\( y^5 \)[/tex] term is: [tex]\( 8y^5 \)[/tex]
- Combine the [tex]\( y^4 \)[/tex] terms: [tex]\( 12y^4 + 2y^4 = 14y^4 \)[/tex]
- Combine the [tex]\( y^3 \)[/tex] terms: [tex]\( 4y^3 + 3y^3 = 7y^3 \)[/tex]
- The [tex]\( y^2 \)[/tex] term is: [tex]\( y^2 \)[/tex]
So, the final polynomial describing the total number of leaves on the tree is:
[tex]\[ 8y^5 + 14y^4 + 7y^3 + y^2 \][/tex]
This polynomial represents the total number of leaves on the tree as a function of [tex]\( y \)[/tex].
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.