At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Let's start by understanding the problem and breaking it down step by step:
We have two points, [tex]\( A = (-4, 3) \)[/tex] and [tex]\( B = (4, 4) \)[/tex]. The given dilation is [tex]\( D_{O, 0.5}(x, y) = \left(\frac{1}{2} x, \frac{1}{2} y\right) \)[/tex].
We are to determine the properties of the image after applying this dilation. Specifically, we need to verify the following statements:
1. [tex]$\overline{AB}$[/tex] is parallel to [tex]$\overline{A'B'}$[/tex].
2. The distance from [tex]$A'$[/tex] to the origin is half the distance from [tex]$A$[/tex] to the origin.
3. The vertices of the image are farther from the origin than those of the pre-image.
4. [tex]$\overline{A'B'}$[/tex] is greater than [tex]$\overline{AB}$[/tex].
### Step 1: Apply the dilation to points [tex]\( A \)[/tex] and [tex]\( B \)[/tex]
For point [tex]\( A \)[/tex]:
[tex]\[ A' = \left( \frac{1}{2} \cdot -4, \frac{1}{2} \cdot 3 \right) = (-2, 1.5) \][/tex]
For point [tex]\( B \)[/tex]:
[tex]\[ B' = \left( \frac{1}{2} \cdot 4, \frac{1}{2} \cdot 4 \right) = (2, 2) \][/tex]
### Step 2: Verify the conditions
Condition 1: [tex]$\overline{AB}$[/tex] is parallel to [tex]$\overline{A'B'}$[/tex]
Dilation preserves the parallelism of lines because it scales all coordinates by the same factor. Thus,
[tex]\[ \overline{AB} \parallel \overline{A'B'} \][/tex]
This statement is true.
Condition 2: The distance from [tex]\( A' \)[/tex] to the origin is half the distance from [tex]\( A \)[/tex] to the origin
Calculate the distance from [tex]\( A \)[/tex] to the origin:
[tex]\[ \text{Distance from } A \text{ to the origin} = \sqrt{(-4)^2 + 3^2} = \sqrt{16 + 9} = \sqrt{25} = 5 \][/tex]
Calculate the distance from [tex]\( A' \)[/tex] to the origin:
[tex]\[ \text{Distance from } A' \text{ to the origin} = \sqrt{(-2)^2 + 1.5^2} = \sqrt{4 + 2.25} = \sqrt{6.25} = 2.5 \][/tex]
Indeed,
[tex]\[ 2.5 = \frac{1}{2} \times 5 \][/tex]
This statement is true.
Condition 3: The vertices of the image are farther from the origin than those of the pre-image
From the distances calculated:
- Distance from [tex]\( A \)[/tex] to the origin: 5
- Distance from [tex]\( A' \)[/tex] to the origin: 2.5 (which is less than 5)
This statement is false.
Condition 4: [tex]$\overline{A'B'}$[/tex] is greater than [tex]$\overline{AB}$[/tex]
Calculate the length of [tex]\( \overline{AB} \)[/tex]:
[tex]\[ AB = \sqrt{(4 - (-4))^2 + (4 - 3)^2} = \sqrt{8^2 + 1^2} = \sqrt{64 + 1} = \sqrt{65} \][/tex]
Calculate the length of [tex]\( \overline{A'B'} \)[/tex]:
[tex]\[ A'B' = \sqrt{(2 - (-2))^2 + (2 - 1.5)^2} = \sqrt{4^2 + 0.5^2} = \sqrt{16 + 0.25} = \sqrt{16.25} \][/tex]
Notice that [tex]\( \sqrt{16.25} \)[/tex] is smaller than [tex]\( \sqrt{65} \)[/tex].
Thus,
[tex]\[ A'B' < AB \][/tex]
Hence, this statement is false.
### Conclusion:
- [tex]$\overline{AB}$[/tex] is parallel to [tex]$\overline{A'B'}$[/tex]: True
- The distance from [tex]$A'$[/tex] to the origin is half the distance from [tex]$A$[/tex] to the origin: True
- The vertices of the image are farther from the origin than those of the pre-image: False
- [tex]$\overline{A'B'}$[/tex] is greater than [tex]$\overline{AB}$[/tex]: False
We have two points, [tex]\( A = (-4, 3) \)[/tex] and [tex]\( B = (4, 4) \)[/tex]. The given dilation is [tex]\( D_{O, 0.5}(x, y) = \left(\frac{1}{2} x, \frac{1}{2} y\right) \)[/tex].
We are to determine the properties of the image after applying this dilation. Specifically, we need to verify the following statements:
1. [tex]$\overline{AB}$[/tex] is parallel to [tex]$\overline{A'B'}$[/tex].
2. The distance from [tex]$A'$[/tex] to the origin is half the distance from [tex]$A$[/tex] to the origin.
3. The vertices of the image are farther from the origin than those of the pre-image.
4. [tex]$\overline{A'B'}$[/tex] is greater than [tex]$\overline{AB}$[/tex].
### Step 1: Apply the dilation to points [tex]\( A \)[/tex] and [tex]\( B \)[/tex]
For point [tex]\( A \)[/tex]:
[tex]\[ A' = \left( \frac{1}{2} \cdot -4, \frac{1}{2} \cdot 3 \right) = (-2, 1.5) \][/tex]
For point [tex]\( B \)[/tex]:
[tex]\[ B' = \left( \frac{1}{2} \cdot 4, \frac{1}{2} \cdot 4 \right) = (2, 2) \][/tex]
### Step 2: Verify the conditions
Condition 1: [tex]$\overline{AB}$[/tex] is parallel to [tex]$\overline{A'B'}$[/tex]
Dilation preserves the parallelism of lines because it scales all coordinates by the same factor. Thus,
[tex]\[ \overline{AB} \parallel \overline{A'B'} \][/tex]
This statement is true.
Condition 2: The distance from [tex]\( A' \)[/tex] to the origin is half the distance from [tex]\( A \)[/tex] to the origin
Calculate the distance from [tex]\( A \)[/tex] to the origin:
[tex]\[ \text{Distance from } A \text{ to the origin} = \sqrt{(-4)^2 + 3^2} = \sqrt{16 + 9} = \sqrt{25} = 5 \][/tex]
Calculate the distance from [tex]\( A' \)[/tex] to the origin:
[tex]\[ \text{Distance from } A' \text{ to the origin} = \sqrt{(-2)^2 + 1.5^2} = \sqrt{4 + 2.25} = \sqrt{6.25} = 2.5 \][/tex]
Indeed,
[tex]\[ 2.5 = \frac{1}{2} \times 5 \][/tex]
This statement is true.
Condition 3: The vertices of the image are farther from the origin than those of the pre-image
From the distances calculated:
- Distance from [tex]\( A \)[/tex] to the origin: 5
- Distance from [tex]\( A' \)[/tex] to the origin: 2.5 (which is less than 5)
This statement is false.
Condition 4: [tex]$\overline{A'B'}$[/tex] is greater than [tex]$\overline{AB}$[/tex]
Calculate the length of [tex]\( \overline{AB} \)[/tex]:
[tex]\[ AB = \sqrt{(4 - (-4))^2 + (4 - 3)^2} = \sqrt{8^2 + 1^2} = \sqrt{64 + 1} = \sqrt{65} \][/tex]
Calculate the length of [tex]\( \overline{A'B'} \)[/tex]:
[tex]\[ A'B' = \sqrt{(2 - (-2))^2 + (2 - 1.5)^2} = \sqrt{4^2 + 0.5^2} = \sqrt{16 + 0.25} = \sqrt{16.25} \][/tex]
Notice that [tex]\( \sqrt{16.25} \)[/tex] is smaller than [tex]\( \sqrt{65} \)[/tex].
Thus,
[tex]\[ A'B' < AB \][/tex]
Hence, this statement is false.
### Conclusion:
- [tex]$\overline{AB}$[/tex] is parallel to [tex]$\overline{A'B'}$[/tex]: True
- The distance from [tex]$A'$[/tex] to the origin is half the distance from [tex]$A$[/tex] to the origin: True
- The vertices of the image are farther from the origin than those of the pre-image: False
- [tex]$\overline{A'B'}$[/tex] is greater than [tex]$\overline{AB}$[/tex]: False
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.