Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Let's start by understanding the problem and breaking it down step by step:
We have two points, [tex]\( A = (-4, 3) \)[/tex] and [tex]\( B = (4, 4) \)[/tex]. The given dilation is [tex]\( D_{O, 0.5}(x, y) = \left(\frac{1}{2} x, \frac{1}{2} y\right) \)[/tex].
We are to determine the properties of the image after applying this dilation. Specifically, we need to verify the following statements:
1. [tex]$\overline{AB}$[/tex] is parallel to [tex]$\overline{A'B'}$[/tex].
2. The distance from [tex]$A'$[/tex] to the origin is half the distance from [tex]$A$[/tex] to the origin.
3. The vertices of the image are farther from the origin than those of the pre-image.
4. [tex]$\overline{A'B'}$[/tex] is greater than [tex]$\overline{AB}$[/tex].
### Step 1: Apply the dilation to points [tex]\( A \)[/tex] and [tex]\( B \)[/tex]
For point [tex]\( A \)[/tex]:
[tex]\[ A' = \left( \frac{1}{2} \cdot -4, \frac{1}{2} \cdot 3 \right) = (-2, 1.5) \][/tex]
For point [tex]\( B \)[/tex]:
[tex]\[ B' = \left( \frac{1}{2} \cdot 4, \frac{1}{2} \cdot 4 \right) = (2, 2) \][/tex]
### Step 2: Verify the conditions
Condition 1: [tex]$\overline{AB}$[/tex] is parallel to [tex]$\overline{A'B'}$[/tex]
Dilation preserves the parallelism of lines because it scales all coordinates by the same factor. Thus,
[tex]\[ \overline{AB} \parallel \overline{A'B'} \][/tex]
This statement is true.
Condition 2: The distance from [tex]\( A' \)[/tex] to the origin is half the distance from [tex]\( A \)[/tex] to the origin
Calculate the distance from [tex]\( A \)[/tex] to the origin:
[tex]\[ \text{Distance from } A \text{ to the origin} = \sqrt{(-4)^2 + 3^2} = \sqrt{16 + 9} = \sqrt{25} = 5 \][/tex]
Calculate the distance from [tex]\( A' \)[/tex] to the origin:
[tex]\[ \text{Distance from } A' \text{ to the origin} = \sqrt{(-2)^2 + 1.5^2} = \sqrt{4 + 2.25} = \sqrt{6.25} = 2.5 \][/tex]
Indeed,
[tex]\[ 2.5 = \frac{1}{2} \times 5 \][/tex]
This statement is true.
Condition 3: The vertices of the image are farther from the origin than those of the pre-image
From the distances calculated:
- Distance from [tex]\( A \)[/tex] to the origin: 5
- Distance from [tex]\( A' \)[/tex] to the origin: 2.5 (which is less than 5)
This statement is false.
Condition 4: [tex]$\overline{A'B'}$[/tex] is greater than [tex]$\overline{AB}$[/tex]
Calculate the length of [tex]\( \overline{AB} \)[/tex]:
[tex]\[ AB = \sqrt{(4 - (-4))^2 + (4 - 3)^2} = \sqrt{8^2 + 1^2} = \sqrt{64 + 1} = \sqrt{65} \][/tex]
Calculate the length of [tex]\( \overline{A'B'} \)[/tex]:
[tex]\[ A'B' = \sqrt{(2 - (-2))^2 + (2 - 1.5)^2} = \sqrt{4^2 + 0.5^2} = \sqrt{16 + 0.25} = \sqrt{16.25} \][/tex]
Notice that [tex]\( \sqrt{16.25} \)[/tex] is smaller than [tex]\( \sqrt{65} \)[/tex].
Thus,
[tex]\[ A'B' < AB \][/tex]
Hence, this statement is false.
### Conclusion:
- [tex]$\overline{AB}$[/tex] is parallel to [tex]$\overline{A'B'}$[/tex]: True
- The distance from [tex]$A'$[/tex] to the origin is half the distance from [tex]$A$[/tex] to the origin: True
- The vertices of the image are farther from the origin than those of the pre-image: False
- [tex]$\overline{A'B'}$[/tex] is greater than [tex]$\overline{AB}$[/tex]: False
We have two points, [tex]\( A = (-4, 3) \)[/tex] and [tex]\( B = (4, 4) \)[/tex]. The given dilation is [tex]\( D_{O, 0.5}(x, y) = \left(\frac{1}{2} x, \frac{1}{2} y\right) \)[/tex].
We are to determine the properties of the image after applying this dilation. Specifically, we need to verify the following statements:
1. [tex]$\overline{AB}$[/tex] is parallel to [tex]$\overline{A'B'}$[/tex].
2. The distance from [tex]$A'$[/tex] to the origin is half the distance from [tex]$A$[/tex] to the origin.
3. The vertices of the image are farther from the origin than those of the pre-image.
4. [tex]$\overline{A'B'}$[/tex] is greater than [tex]$\overline{AB}$[/tex].
### Step 1: Apply the dilation to points [tex]\( A \)[/tex] and [tex]\( B \)[/tex]
For point [tex]\( A \)[/tex]:
[tex]\[ A' = \left( \frac{1}{2} \cdot -4, \frac{1}{2} \cdot 3 \right) = (-2, 1.5) \][/tex]
For point [tex]\( B \)[/tex]:
[tex]\[ B' = \left( \frac{1}{2} \cdot 4, \frac{1}{2} \cdot 4 \right) = (2, 2) \][/tex]
### Step 2: Verify the conditions
Condition 1: [tex]$\overline{AB}$[/tex] is parallel to [tex]$\overline{A'B'}$[/tex]
Dilation preserves the parallelism of lines because it scales all coordinates by the same factor. Thus,
[tex]\[ \overline{AB} \parallel \overline{A'B'} \][/tex]
This statement is true.
Condition 2: The distance from [tex]\( A' \)[/tex] to the origin is half the distance from [tex]\( A \)[/tex] to the origin
Calculate the distance from [tex]\( A \)[/tex] to the origin:
[tex]\[ \text{Distance from } A \text{ to the origin} = \sqrt{(-4)^2 + 3^2} = \sqrt{16 + 9} = \sqrt{25} = 5 \][/tex]
Calculate the distance from [tex]\( A' \)[/tex] to the origin:
[tex]\[ \text{Distance from } A' \text{ to the origin} = \sqrt{(-2)^2 + 1.5^2} = \sqrt{4 + 2.25} = \sqrt{6.25} = 2.5 \][/tex]
Indeed,
[tex]\[ 2.5 = \frac{1}{2} \times 5 \][/tex]
This statement is true.
Condition 3: The vertices of the image are farther from the origin than those of the pre-image
From the distances calculated:
- Distance from [tex]\( A \)[/tex] to the origin: 5
- Distance from [tex]\( A' \)[/tex] to the origin: 2.5 (which is less than 5)
This statement is false.
Condition 4: [tex]$\overline{A'B'}$[/tex] is greater than [tex]$\overline{AB}$[/tex]
Calculate the length of [tex]\( \overline{AB} \)[/tex]:
[tex]\[ AB = \sqrt{(4 - (-4))^2 + (4 - 3)^2} = \sqrt{8^2 + 1^2} = \sqrt{64 + 1} = \sqrt{65} \][/tex]
Calculate the length of [tex]\( \overline{A'B'} \)[/tex]:
[tex]\[ A'B' = \sqrt{(2 - (-2))^2 + (2 - 1.5)^2} = \sqrt{4^2 + 0.5^2} = \sqrt{16 + 0.25} = \sqrt{16.25} \][/tex]
Notice that [tex]\( \sqrt{16.25} \)[/tex] is smaller than [tex]\( \sqrt{65} \)[/tex].
Thus,
[tex]\[ A'B' < AB \][/tex]
Hence, this statement is false.
### Conclusion:
- [tex]$\overline{AB}$[/tex] is parallel to [tex]$\overline{A'B'}$[/tex]: True
- The distance from [tex]$A'$[/tex] to the origin is half the distance from [tex]$A$[/tex] to the origin: True
- The vertices of the image are farther from the origin than those of the pre-image: False
- [tex]$\overline{A'B'}$[/tex] is greater than [tex]$\overline{AB}$[/tex]: False
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.