Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To find the location of a point on the number line that is [tex]\(\frac{2}{5}\)[/tex] of the way from [tex]\(A = 31\)[/tex] to [tex]\(B = 6\)[/tex], follow these steps:
1. Calculate the difference between [tex]\(B\)[/tex] and [tex]\(A\)[/tex]:
[tex]\[ \text{Difference} = B - A \][/tex]
Substituting the values, we have:
[tex]\[ \text{Difference} = 6 - 31 = -25 \][/tex]
2. Determine the distance to move from [tex]\(A\)[/tex] to the desired point:
We need to move [tex]\(\frac{2}{5}\)[/tex] of the way from [tex]\(A\)[/tex] to [tex]\(B\)[/tex]. So, we calculate:
[tex]\[ \text{Distance} = \text{Difference} \times \frac{2}{5} \][/tex]
Substitute the calculated difference:
[tex]\[ \text{Distance} = -25 \times \frac{2}{5} = -10 \][/tex]
3. Find the location of the point by adding this distance to [tex]\(A\)[/tex]:
[tex]\[ \text{Location} = A + \text{Distance} \][/tex]
Substitute the values:
[tex]\[ \text{Location} = 31 + (-10) = 21 \][/tex]
Therefore, the location of the point that is [tex]\(\frac{2}{5}\)[/tex] of the way from [tex]\(A = 31\)[/tex] to [tex]\(B = 6\)[/tex] is [tex]\(21\)[/tex].
1. Calculate the difference between [tex]\(B\)[/tex] and [tex]\(A\)[/tex]:
[tex]\[ \text{Difference} = B - A \][/tex]
Substituting the values, we have:
[tex]\[ \text{Difference} = 6 - 31 = -25 \][/tex]
2. Determine the distance to move from [tex]\(A\)[/tex] to the desired point:
We need to move [tex]\(\frac{2}{5}\)[/tex] of the way from [tex]\(A\)[/tex] to [tex]\(B\)[/tex]. So, we calculate:
[tex]\[ \text{Distance} = \text{Difference} \times \frac{2}{5} \][/tex]
Substitute the calculated difference:
[tex]\[ \text{Distance} = -25 \times \frac{2}{5} = -10 \][/tex]
3. Find the location of the point by adding this distance to [tex]\(A\)[/tex]:
[tex]\[ \text{Location} = A + \text{Distance} \][/tex]
Substitute the values:
[tex]\[ \text{Location} = 31 + (-10) = 21 \][/tex]
Therefore, the location of the point that is [tex]\(\frac{2}{5}\)[/tex] of the way from [tex]\(A = 31\)[/tex] to [tex]\(B = 6\)[/tex] is [tex]\(21\)[/tex].
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.