At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To solve this question, we need to calculate the energy of a photon using its wavelength. We can use the formula for the energy of a photon:
[tex]\[ E = \frac{h \cdot c}{\lambda} \][/tex]
where:
- [tex]\( E \)[/tex] is the energy of the photon,
- [tex]\( h \)[/tex] is Planck's constant ([tex]\( 6.62607015 \times 10^{-34} \)[/tex] Joule·seconds),
- [tex]\( c \)[/tex] is the speed of light in a vacuum ([tex]\( 3 \times 10^8 \)[/tex] meters/second),
- [tex]\( \lambda \)[/tex] is the wavelength of the photon.
Given:
[tex]\[ \lambda = 9 \times 10^{-8} \text{ m} \][/tex]
1. First, we need to understand what each term represents and plug in the known values:
- [tex]\( h = 6.62607015 \times 10^{-34} \, \text{Joule·seconds} \)[/tex]
- [tex]\( c = 3 \times 10^8 \, \text{m/s} \)[/tex]
- [tex]\( \lambda = 9 \times 10^{-8} \, \text{m} \)[/tex]
2. Now substitute these values into the formula:
[tex]\[ E = \frac{6.62607015 \times 10^{-34} \cdot 3 \times 10^8}{9 \times 10^{-8}} \][/tex]
3. Calculate the numerator:
[tex]\[ 6.62607015 \times 10^{-34} \cdot 3 \times 10^8 = 1.987821045 \times 10^{-25} \, \text{Joule·meters} \][/tex]
4. Now divide the result by the given wavelength:
[tex]\[ E = \frac{1.987821045 \times 10^{-25}}{9 \times 10^{-8}} \][/tex]
5. Perform the division:
[tex]\[ E = 2.20869005 \times 10^{-18} \, \text{J} \][/tex]
Therefore, the energy of a photon with a wavelength of [tex]\( 9 \times 10^{-8} \)[/tex] meters is approximately:
[tex]\[ \boxed{2.21 \times 10^{-18} \, \text{J}} \][/tex]
So, the correct answer is:
D. [tex]\( 2.21 \times 10^{-18} \, \text{J} \)[/tex]
[tex]\[ E = \frac{h \cdot c}{\lambda} \][/tex]
where:
- [tex]\( E \)[/tex] is the energy of the photon,
- [tex]\( h \)[/tex] is Planck's constant ([tex]\( 6.62607015 \times 10^{-34} \)[/tex] Joule·seconds),
- [tex]\( c \)[/tex] is the speed of light in a vacuum ([tex]\( 3 \times 10^8 \)[/tex] meters/second),
- [tex]\( \lambda \)[/tex] is the wavelength of the photon.
Given:
[tex]\[ \lambda = 9 \times 10^{-8} \text{ m} \][/tex]
1. First, we need to understand what each term represents and plug in the known values:
- [tex]\( h = 6.62607015 \times 10^{-34} \, \text{Joule·seconds} \)[/tex]
- [tex]\( c = 3 \times 10^8 \, \text{m/s} \)[/tex]
- [tex]\( \lambda = 9 \times 10^{-8} \, \text{m} \)[/tex]
2. Now substitute these values into the formula:
[tex]\[ E = \frac{6.62607015 \times 10^{-34} \cdot 3 \times 10^8}{9 \times 10^{-8}} \][/tex]
3. Calculate the numerator:
[tex]\[ 6.62607015 \times 10^{-34} \cdot 3 \times 10^8 = 1.987821045 \times 10^{-25} \, \text{Joule·meters} \][/tex]
4. Now divide the result by the given wavelength:
[tex]\[ E = \frac{1.987821045 \times 10^{-25}}{9 \times 10^{-8}} \][/tex]
5. Perform the division:
[tex]\[ E = 2.20869005 \times 10^{-18} \, \text{J} \][/tex]
Therefore, the energy of a photon with a wavelength of [tex]\( 9 \times 10^{-8} \)[/tex] meters is approximately:
[tex]\[ \boxed{2.21 \times 10^{-18} \, \text{J}} \][/tex]
So, the correct answer is:
D. [tex]\( 2.21 \times 10^{-18} \, \text{J} \)[/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.