Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Sure! Let's determine the group to which an element with the electron configuration [tex]\( \text{1s}^2 \ \text{2s}^2 \ \text{2p}^6 \ \text{3s}^2 \ \text{3p}^6 \ \text{3d}^1 \ \text{4s}^2 \)[/tex] belongs.
1. Identify the Period: The electron configuration shows electrons filling up to the [tex]\( \text{4s} \)[/tex] orbital. Thus, the element is in the 4th period.
2. Analyze the Outermost Orbitals:
- The configuration [tex]\( \text{4s}^2 \)[/tex] indicates there are 2 electrons in the [tex]\( \text{4s} \)[/tex] orbital.
- Additionally, there is 1 electron in the [tex]\( \text{3d} \)[/tex] orbital ( [tex]\( \text{3d}^1 \)[/tex] ).
3. Determine the Group:
- According to the periodic table, the group number can be determined primarily by the electrons in the outermost shell (valence electrons).
- The [tex]\( \text{4s}^2 \)[/tex] configuration means we have 2 valence electrons in the 4s subshell.
- The [tex]\( \text{3d} \)[/tex] electron also influences the group, as it adds to the count of valence electrons affecting transition metals.
Given the structure and location of the electron configuration, the element falls under the d-block of the periodic table, specifically the 4th period.
- The first column of the d-block starts from Scandium ([tex]\( \text{Sc} \)[/tex]), where [tex]\( \text{3d}^1 \text{4s}^2 = \text{3} \)[/tex] electrons.
Therefore, the element with the electron configuration [tex]\(1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^6 \ 3d^1 \ 4s^2 \)[/tex] belongs to Group 3 of the periodic table.
1. Identify the Period: The electron configuration shows electrons filling up to the [tex]\( \text{4s} \)[/tex] orbital. Thus, the element is in the 4th period.
2. Analyze the Outermost Orbitals:
- The configuration [tex]\( \text{4s}^2 \)[/tex] indicates there are 2 electrons in the [tex]\( \text{4s} \)[/tex] orbital.
- Additionally, there is 1 electron in the [tex]\( \text{3d} \)[/tex] orbital ( [tex]\( \text{3d}^1 \)[/tex] ).
3. Determine the Group:
- According to the periodic table, the group number can be determined primarily by the electrons in the outermost shell (valence electrons).
- The [tex]\( \text{4s}^2 \)[/tex] configuration means we have 2 valence electrons in the 4s subshell.
- The [tex]\( \text{3d} \)[/tex] electron also influences the group, as it adds to the count of valence electrons affecting transition metals.
Given the structure and location of the electron configuration, the element falls under the d-block of the periodic table, specifically the 4th period.
- The first column of the d-block starts from Scandium ([tex]\( \text{Sc} \)[/tex]), where [tex]\( \text{3d}^1 \text{4s}^2 = \text{3} \)[/tex] electrons.
Therefore, the element with the electron configuration [tex]\(1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^6 \ 3d^1 \ 4s^2 \)[/tex] belongs to Group 3 of the periodic table.
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.