Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To solve the inequalities and represent their solutions on the number line, follow these steps:
### 1. Solve the first inequality: [tex]\( x - 99 \leq -104 \)[/tex]
Add 99 to both sides to isolate [tex]\( x \)[/tex]:
[tex]\[ x - 99 + 99 \leq -104 + 99 \][/tex]
[tex]\[ x \leq -5 \][/tex]
So, the solution to the first inequality is [tex]\( x \leq -5 \)[/tex].
### 2. Solve the second inequality: [tex]\( x - 51 \leq -43 \)[/tex]
Add 51 to both sides to isolate [tex]\( x \)[/tex]:
[tex]\[ x - 51 + 51 \leq -43 + 51 \][/tex]
[tex]\[ x \leq 8 \][/tex]
So, the solution to the second inequality is [tex]\( x \leq 8 \)[/tex].
### 3. Solve the third inequality: [tex]\( 150 + x \leq 144 \)[/tex]
Subtract 150 from both sides to isolate [tex]\( x \)[/tex]:
[tex]\[ 150 + x - 150 \leq 144 - 150 \][/tex]
[tex]\[ x \leq -6 \][/tex]
So, the solution to the third inequality is [tex]\( x \leq -6 \)[/tex].
### 4. Solve the fourth inequality: [tex]\( 75 < x \)[/tex]
This inequality can be written in standard mathematical notation as:
[tex]\[ x > 75 \][/tex]
So, the solution to the fourth inequality is [tex]\( x > 75 \)[/tex].
### Representing on the Number Line
To represent these solutions on a number line:
1. [tex]\( x \leq -5 \)[/tex]: This includes all numbers to the left of and including -5. Draw a solid circle at -5 and shade everything to the left.
2. [tex]\( x \leq 8 \)[/tex]: This includes all numbers to the left of and including 8. Draw a solid circle at 8 and shade everything to the left.
3. [tex]\( x \leq -6 \)[/tex]: This includes all numbers to the left of and including -6. Draw a solid circle at -6 and shade everything to the left.
4. [tex]\( x > 75 \)[/tex]: This includes all numbers to the right of 75. Draw an open circle at 75 and shade everything to the right.
### Combined Solution
When considering the intersection of these inequalities:
- The solution [tex]\( x \leq -5 \)[/tex] implies that [tex]\( x \)[/tex] must be no greater than -5.
- The solution [tex]\( x \leq -6 \)[/tex] is more restrictive than [tex]\( x \leq -5 \)[/tex], since -6 is less than -5.
The most restrictive [tex]\( x \leq -6 \)[/tex] will take precedence in the combined solution for values less than -5.
- The solution [tex]\( x > 75 \)[/tex] does not intersect with any of the previous solutions, so it stands separately.
Final Representation:
1. [tex]\( x \leq -6 \)[/tex] is one range.
2. [tex]\( x > 75 \)[/tex] is another distinct range.
On the number line:
- Mark a solid circle at -6 and shade everything to the left.
- Mark an open circle at 75 and shade everything to the right.
### 1. Solve the first inequality: [tex]\( x - 99 \leq -104 \)[/tex]
Add 99 to both sides to isolate [tex]\( x \)[/tex]:
[tex]\[ x - 99 + 99 \leq -104 + 99 \][/tex]
[tex]\[ x \leq -5 \][/tex]
So, the solution to the first inequality is [tex]\( x \leq -5 \)[/tex].
### 2. Solve the second inequality: [tex]\( x - 51 \leq -43 \)[/tex]
Add 51 to both sides to isolate [tex]\( x \)[/tex]:
[tex]\[ x - 51 + 51 \leq -43 + 51 \][/tex]
[tex]\[ x \leq 8 \][/tex]
So, the solution to the second inequality is [tex]\( x \leq 8 \)[/tex].
### 3. Solve the third inequality: [tex]\( 150 + x \leq 144 \)[/tex]
Subtract 150 from both sides to isolate [tex]\( x \)[/tex]:
[tex]\[ 150 + x - 150 \leq 144 - 150 \][/tex]
[tex]\[ x \leq -6 \][/tex]
So, the solution to the third inequality is [tex]\( x \leq -6 \)[/tex].
### 4. Solve the fourth inequality: [tex]\( 75 < x \)[/tex]
This inequality can be written in standard mathematical notation as:
[tex]\[ x > 75 \][/tex]
So, the solution to the fourth inequality is [tex]\( x > 75 \)[/tex].
### Representing on the Number Line
To represent these solutions on a number line:
1. [tex]\( x \leq -5 \)[/tex]: This includes all numbers to the left of and including -5. Draw a solid circle at -5 and shade everything to the left.
2. [tex]\( x \leq 8 \)[/tex]: This includes all numbers to the left of and including 8. Draw a solid circle at 8 and shade everything to the left.
3. [tex]\( x \leq -6 \)[/tex]: This includes all numbers to the left of and including -6. Draw a solid circle at -6 and shade everything to the left.
4. [tex]\( x > 75 \)[/tex]: This includes all numbers to the right of 75. Draw an open circle at 75 and shade everything to the right.
### Combined Solution
When considering the intersection of these inequalities:
- The solution [tex]\( x \leq -5 \)[/tex] implies that [tex]\( x \)[/tex] must be no greater than -5.
- The solution [tex]\( x \leq -6 \)[/tex] is more restrictive than [tex]\( x \leq -5 \)[/tex], since -6 is less than -5.
The most restrictive [tex]\( x \leq -6 \)[/tex] will take precedence in the combined solution for values less than -5.
- The solution [tex]\( x > 75 \)[/tex] does not intersect with any of the previous solutions, so it stands separately.
Final Representation:
1. [tex]\( x \leq -6 \)[/tex] is one range.
2. [tex]\( x > 75 \)[/tex] is another distinct range.
On the number line:
- Mark a solid circle at -6 and shade everything to the left.
- Mark an open circle at 75 and shade everything to the right.
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.