Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine the transformations applied to produce the graph of the function [tex]\( y = 0.5 \cot(0.5x) \)[/tex] from the parent function [tex]\( y = \cot(x) \)[/tex], we need to analyze the components of the function.
### Step-by-Step Solution
1. Understanding the Parent Function:
- The parent function is [tex]\( y = \cot(x) \)[/tex].
- The period of the parent function [tex]\( y = \cot(x) \)[/tex] is [tex]\( \pi \)[/tex].
2. Examining the New Function Components:
- The given function is [tex]\( y = 0.5 \cot(0.5x) \)[/tex].
3. Horizontal Transformation:
- The input to the cotangent function has been modified from [tex]\( x \)[/tex] to [tex]\( 0.5x \)[/tex].
- To find the new period, we set up the relationship: [tex]\( \text{Period of } \cot(0.5x) = \frac{\pi}{0.5} = 2\pi \)[/tex].
- This indicates a horizontal stretch because the period has increased from [tex]\( \pi \)[/tex] to [tex]\( 2\pi \)[/tex].
4. Vertical Transformation:
- The output of the cotangent function is multiplied by 0.5.
- This multiplication by a factor less than 1 (0.5) indicates a vertical compression.
### Final Conclusion
- We have a horizontal stretch that changes the period from [tex]\( \pi \)[/tex] to [tex]\( 2\pi \)[/tex].
- We also have a vertical compression.
Hence, the transformations applied to the graph of [tex]\( y = \cot(x) \)[/tex] to produce the graph of [tex]\( y = 0.5 \cot(0.5x) \)[/tex] are:
- A horizontal stretch to produce a period of [tex]\( 2\pi \)[/tex]
- A vertical compression
Thus, the correct answer is:
- A horizontal stretch to produce a period of [tex]\( 2\pi \)[/tex] and a vertical compression
### Step-by-Step Solution
1. Understanding the Parent Function:
- The parent function is [tex]\( y = \cot(x) \)[/tex].
- The period of the parent function [tex]\( y = \cot(x) \)[/tex] is [tex]\( \pi \)[/tex].
2. Examining the New Function Components:
- The given function is [tex]\( y = 0.5 \cot(0.5x) \)[/tex].
3. Horizontal Transformation:
- The input to the cotangent function has been modified from [tex]\( x \)[/tex] to [tex]\( 0.5x \)[/tex].
- To find the new period, we set up the relationship: [tex]\( \text{Period of } \cot(0.5x) = \frac{\pi}{0.5} = 2\pi \)[/tex].
- This indicates a horizontal stretch because the period has increased from [tex]\( \pi \)[/tex] to [tex]\( 2\pi \)[/tex].
4. Vertical Transformation:
- The output of the cotangent function is multiplied by 0.5.
- This multiplication by a factor less than 1 (0.5) indicates a vertical compression.
### Final Conclusion
- We have a horizontal stretch that changes the period from [tex]\( \pi \)[/tex] to [tex]\( 2\pi \)[/tex].
- We also have a vertical compression.
Hence, the transformations applied to the graph of [tex]\( y = \cot(x) \)[/tex] to produce the graph of [tex]\( y = 0.5 \cot(0.5x) \)[/tex] are:
- A horizontal stretch to produce a period of [tex]\( 2\pi \)[/tex]
- A vertical compression
Thus, the correct answer is:
- A horizontal stretch to produce a period of [tex]\( 2\pi \)[/tex] and a vertical compression
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.