Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

For what value of [tex]\( c \)[/tex] is the relation a function?

[tex]\[
\{(2,8),(12,3),(c, 4),(-1,8),(0,3)\}
\][/tex]

A. [tex]\(-1\)[/tex]
B. [tex]\(1\)[/tex]
C. [tex]\(2\)[/tex]
D. [tex]\(12\)[/tex]

Sagot :

To determine for which value of [tex]\( c \)[/tex] the relation is a function, we need to ensure that each x-coordinate in the set of points is unique. The relation will be a function if and only if no x-coordinate is repeated.

Given the set of points:
[tex]\[ \{(2,8), (12,3), (c, 4), (-1,8), (0,3)\} \][/tex]

We consider the possible values for [tex]\( c \)[/tex]:
- [tex]\( c = -1 \)[/tex]
- [tex]\( c = 1 \)[/tex]
- [tex]\( c = 2 \)[/tex]
- [tex]\( c = 12 \)[/tex]

Let's analyze each case to check for uniqueness in the x-coordinates.

1. If [tex]\( c = -1 \)[/tex], the set becomes:
[tex]\[ \{(2,8), (12,3), (-1, 4), (-1, 8), (0,3)\} \][/tex]
Here, the x-coordinate [tex]\(-1\)[/tex] is repeated. Hence, this is not a function.

2. If [tex]\( c = 1 \)[/tex], the set becomes:
[tex]\[ \{(2,8), (12,3), (1, 4), (-1, 8), (0,3)\} \][/tex]
Here, all x-coordinates are unique: [tex]\(2, 12, 1, -1, 0\)[/tex]. Hence, this is a function.

3. If [tex]\( c = 2 \)[/tex], the set becomes:
[tex]\[ \{(2,8), (12,3), (2, 4), (-1, 8), (0,3)\} \][/tex]
Here, the x-coordinate [tex]\(2\)[/tex] is repeated. Hence, this is not a function.

4. If [tex]\( c = 12 \)[/tex], the set becomes:
[tex]\[ \{(2,8), (12,3), (12, 4), (-1, 8), (0,3)\} \][/tex]
Here, the x-coordinate [tex]\(12\)[/tex] is repeated. Hence, this is not a function.

From the above analysis, the only value of [tex]\( c \)[/tex] that makes the relation a function is [tex]\( c = 1 \)[/tex].

Thus, the value of [tex]\( c \)[/tex] for which the relation is a function is [tex]\(\boxed{1}\)[/tex].