Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To determine for which value of [tex]\( c \)[/tex] the relation is a function, we need to ensure that each x-coordinate in the set of points is unique. The relation will be a function if and only if no x-coordinate is repeated.
Given the set of points:
[tex]\[ \{(2,8), (12,3), (c, 4), (-1,8), (0,3)\} \][/tex]
We consider the possible values for [tex]\( c \)[/tex]:
- [tex]\( c = -1 \)[/tex]
- [tex]\( c = 1 \)[/tex]
- [tex]\( c = 2 \)[/tex]
- [tex]\( c = 12 \)[/tex]
Let's analyze each case to check for uniqueness in the x-coordinates.
1. If [tex]\( c = -1 \)[/tex], the set becomes:
[tex]\[ \{(2,8), (12,3), (-1, 4), (-1, 8), (0,3)\} \][/tex]
Here, the x-coordinate [tex]\(-1\)[/tex] is repeated. Hence, this is not a function.
2. If [tex]\( c = 1 \)[/tex], the set becomes:
[tex]\[ \{(2,8), (12,3), (1, 4), (-1, 8), (0,3)\} \][/tex]
Here, all x-coordinates are unique: [tex]\(2, 12, 1, -1, 0\)[/tex]. Hence, this is a function.
3. If [tex]\( c = 2 \)[/tex], the set becomes:
[tex]\[ \{(2,8), (12,3), (2, 4), (-1, 8), (0,3)\} \][/tex]
Here, the x-coordinate [tex]\(2\)[/tex] is repeated. Hence, this is not a function.
4. If [tex]\( c = 12 \)[/tex], the set becomes:
[tex]\[ \{(2,8), (12,3), (12, 4), (-1, 8), (0,3)\} \][/tex]
Here, the x-coordinate [tex]\(12\)[/tex] is repeated. Hence, this is not a function.
From the above analysis, the only value of [tex]\( c \)[/tex] that makes the relation a function is [tex]\( c = 1 \)[/tex].
Thus, the value of [tex]\( c \)[/tex] for which the relation is a function is [tex]\(\boxed{1}\)[/tex].
Given the set of points:
[tex]\[ \{(2,8), (12,3), (c, 4), (-1,8), (0,3)\} \][/tex]
We consider the possible values for [tex]\( c \)[/tex]:
- [tex]\( c = -1 \)[/tex]
- [tex]\( c = 1 \)[/tex]
- [tex]\( c = 2 \)[/tex]
- [tex]\( c = 12 \)[/tex]
Let's analyze each case to check for uniqueness in the x-coordinates.
1. If [tex]\( c = -1 \)[/tex], the set becomes:
[tex]\[ \{(2,8), (12,3), (-1, 4), (-1, 8), (0,3)\} \][/tex]
Here, the x-coordinate [tex]\(-1\)[/tex] is repeated. Hence, this is not a function.
2. If [tex]\( c = 1 \)[/tex], the set becomes:
[tex]\[ \{(2,8), (12,3), (1, 4), (-1, 8), (0,3)\} \][/tex]
Here, all x-coordinates are unique: [tex]\(2, 12, 1, -1, 0\)[/tex]. Hence, this is a function.
3. If [tex]\( c = 2 \)[/tex], the set becomes:
[tex]\[ \{(2,8), (12,3), (2, 4), (-1, 8), (0,3)\} \][/tex]
Here, the x-coordinate [tex]\(2\)[/tex] is repeated. Hence, this is not a function.
4. If [tex]\( c = 12 \)[/tex], the set becomes:
[tex]\[ \{(2,8), (12,3), (12, 4), (-1, 8), (0,3)\} \][/tex]
Here, the x-coordinate [tex]\(12\)[/tex] is repeated. Hence, this is not a function.
From the above analysis, the only value of [tex]\( c \)[/tex] that makes the relation a function is [tex]\( c = 1 \)[/tex].
Thus, the value of [tex]\( c \)[/tex] for which the relation is a function is [tex]\(\boxed{1}\)[/tex].
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.