Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine for which value of [tex]\( c \)[/tex] the relation is a function, we need to ensure that each x-coordinate in the set of points is unique. The relation will be a function if and only if no x-coordinate is repeated.
Given the set of points:
[tex]\[ \{(2,8), (12,3), (c, 4), (-1,8), (0,3)\} \][/tex]
We consider the possible values for [tex]\( c \)[/tex]:
- [tex]\( c = -1 \)[/tex]
- [tex]\( c = 1 \)[/tex]
- [tex]\( c = 2 \)[/tex]
- [tex]\( c = 12 \)[/tex]
Let's analyze each case to check for uniqueness in the x-coordinates.
1. If [tex]\( c = -1 \)[/tex], the set becomes:
[tex]\[ \{(2,8), (12,3), (-1, 4), (-1, 8), (0,3)\} \][/tex]
Here, the x-coordinate [tex]\(-1\)[/tex] is repeated. Hence, this is not a function.
2. If [tex]\( c = 1 \)[/tex], the set becomes:
[tex]\[ \{(2,8), (12,3), (1, 4), (-1, 8), (0,3)\} \][/tex]
Here, all x-coordinates are unique: [tex]\(2, 12, 1, -1, 0\)[/tex]. Hence, this is a function.
3. If [tex]\( c = 2 \)[/tex], the set becomes:
[tex]\[ \{(2,8), (12,3), (2, 4), (-1, 8), (0,3)\} \][/tex]
Here, the x-coordinate [tex]\(2\)[/tex] is repeated. Hence, this is not a function.
4. If [tex]\( c = 12 \)[/tex], the set becomes:
[tex]\[ \{(2,8), (12,3), (12, 4), (-1, 8), (0,3)\} \][/tex]
Here, the x-coordinate [tex]\(12\)[/tex] is repeated. Hence, this is not a function.
From the above analysis, the only value of [tex]\( c \)[/tex] that makes the relation a function is [tex]\( c = 1 \)[/tex].
Thus, the value of [tex]\( c \)[/tex] for which the relation is a function is [tex]\(\boxed{1}\)[/tex].
Given the set of points:
[tex]\[ \{(2,8), (12,3), (c, 4), (-1,8), (0,3)\} \][/tex]
We consider the possible values for [tex]\( c \)[/tex]:
- [tex]\( c = -1 \)[/tex]
- [tex]\( c = 1 \)[/tex]
- [tex]\( c = 2 \)[/tex]
- [tex]\( c = 12 \)[/tex]
Let's analyze each case to check for uniqueness in the x-coordinates.
1. If [tex]\( c = -1 \)[/tex], the set becomes:
[tex]\[ \{(2,8), (12,3), (-1, 4), (-1, 8), (0,3)\} \][/tex]
Here, the x-coordinate [tex]\(-1\)[/tex] is repeated. Hence, this is not a function.
2. If [tex]\( c = 1 \)[/tex], the set becomes:
[tex]\[ \{(2,8), (12,3), (1, 4), (-1, 8), (0,3)\} \][/tex]
Here, all x-coordinates are unique: [tex]\(2, 12, 1, -1, 0\)[/tex]. Hence, this is a function.
3. If [tex]\( c = 2 \)[/tex], the set becomes:
[tex]\[ \{(2,8), (12,3), (2, 4), (-1, 8), (0,3)\} \][/tex]
Here, the x-coordinate [tex]\(2\)[/tex] is repeated. Hence, this is not a function.
4. If [tex]\( c = 12 \)[/tex], the set becomes:
[tex]\[ \{(2,8), (12,3), (12, 4), (-1, 8), (0,3)\} \][/tex]
Here, the x-coordinate [tex]\(12\)[/tex] is repeated. Hence, this is not a function.
From the above analysis, the only value of [tex]\( c \)[/tex] that makes the relation a function is [tex]\( c = 1 \)[/tex].
Thus, the value of [tex]\( c \)[/tex] for which the relation is a function is [tex]\(\boxed{1}\)[/tex].
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.