At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.

For each sum or product, determine whether the result is a rational number or an irrational number. Then choose the appropriate reason for each.

\begin{tabular}{|l|l|l|l|}
\hline
& \begin{tabular}{l}
Result is \\
Rational
\end{tabular}
& \begin{tabular}{l}
Result is \\
Irrational
\end{tabular}
& \begin{tabular}{l}
Reason
\end{tabular} \\
\hline
(a) [tex]$\sqrt{10} + 27$[/tex] & & & (Choose one) \\
\hline
(b) [tex]$12 + \frac{4}{5}$[/tex] & & & (Choose one) \\
\hline
(c) [tex]$21 \times \sqrt{3}$[/tex] & & & (Choose one) \\
\hline
(d) [tex]$\frac{12}{23} \times \frac{5}{11}$[/tex] & & & (Choose one) \\
\hline
\end{tabular}


Sagot :

Let's determine the nature of each expression's result step by step.

### (a) [tex]\(\sqrt{10} + 27\)[/tex]
- Reasoning: [tex]\(\sqrt{10}\)[/tex] is an irrational number because it cannot be expressed as a fraction of two integers. Adding an irrational number to any rational number, in this case, 27, still results in an irrational number.
- Result: The result of [tex]\(\sqrt{10} + 27\)[/tex] is Irrational.

### (b) [tex]\(12 + \frac{4}{5}\)[/tex]
- Reasoning: Both 12 and [tex]\(\frac{4}{5}\)[/tex] are rational numbers. Rational numbers are defined as numbers that can be expressed as the quotient or fraction of two integers. The sum of two rational numbers remains rational.
- Result: The result of [tex]\(12 + \frac{4}{5}\)[/tex] is Rational.

### (c) [tex]\(21 \times \sqrt{3}\)[/tex]
- Reasoning: [tex]\(\sqrt{3}\)[/tex] is an irrational number. Multiplying any rational number, in this case, 21, with an irrational number results in an irrational number.
- Result: The result of [tex]\(21 \times \sqrt{3}\)[/tex] is Irrational.

### (d) [tex]\(\frac{12}{23} \times \frac{5}{11}\)[/tex]
- Reasoning: Both [tex]\(\frac{12}{23}\)[/tex] and [tex]\(\frac{5}{11}\)[/tex] are rational numbers. The product of two rational numbers is still rational.
- Result: The result of [tex]\(\frac{12}{23} \times \frac{5}{11}\)[/tex] is Rational.

Finally, summarizing the results in the given table format:

[tex]\[ \begin{tabular}{|l|l|l|l|} \hline & \text{Result is Rational} & \text{Result is Irrational} & \text{Reason} \\ \hline (a) \(\sqrt{10} + 27\) & & X & \begin{tabular}{c} Irrational \\ number added \\ to Rational \\ number gives \\ an Irrational number \end{tabular} \\ \hline (b) \(12 + \frac{4}{5}\) & X & & \begin{tabular}{c} Sum of \\ Rational \\ numbers \\ is Rational \end{tabular} \\ \hline (c) \(21 \times \sqrt{3}\) & & X & \begin{tabular}{c} Product \\ of Rational \\ and \\ Irrational \\ numbers \\ is Irrational \end{tabular} \\ \hline (d) \(\frac{12}{23} \times \frac{5}{11}\) & X & & \begin{tabular}{c} Product \\ of \\ Rational \\ numbers \\ is Rational \end{tabular} \\ \hline \end{tabular} \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.