Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.

Complete the table by classifying the polynomials by degree and number of terms.

\begin{tabular}{|c|c|c|}
\hline Polynomial & Name Using Degree & Name Using Number of Terms \\
\hline [tex]$2x^2$[/tex] & & \\
\hline [tex]$-2$[/tex] & & \\
\hline [tex]$3x-9$[/tex] & & \\
\hline [tex]$-3x^2 - 6x + 9$[/tex] & & \\
\hline
\end{tabular}

Terms for classification:
- Exponential
- Constant
- Monomial
- Binomial
- Linear
- Trinomial
- Quadratic


Sagot :

Let's classify each polynomial based on its degree and the number of terms:

1. [tex]\(2 x^2\)[/tex]:
- Degree: The highest power of [tex]\(x\)[/tex] is 2. Therefore, it is a quadratic polynomial.
- Number of Terms: There is only one term. Therefore, it is a monomial.

2. -2:
- Degree: There is no [tex]\(x\)[/tex] term. Therefore, it is a constant polynomial.
- Number of Terms: There is only one term. Therefore, it is a monomial.

3. [tex]\(3 x - 9\)[/tex]:
- Degree: The highest power of [tex]\(x\)[/tex] is 1. Therefore, it is a linear polynomial.
- Number of Terms: There are two terms. Therefore, it is a binomial.

4. [tex]\(-3 x^2 - 6 x + 9\)[/tex]:
- Degree: The highest power of [tex]\(x\)[/tex] is 2. Therefore, it is a quadratic polynomial.
- Number of Terms: There are three terms. Therefore, it is a trinomial.

Based on this classification, the completed table is:

[tex]\[ \begin{tabular}{|c|c|c|} \hline \text{Polynominal} & \begin{tabular}{c} \text{Name Using} \\ \text{Degree} \end{tabular} & \begin{tabular}{c} \text{Name Using} \\ \text{Number of Terms} \end{tabular} \\ \hline $2 x^2$ & quadratic & monomial \\ \hline -2 & constant & monomial \\ \hline $3 x-9$ & linear & binomial \\ \hline $-3 x^2-6 x+9$ & quadratic & trinomial \\ \hline \end{tabular} \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.