Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine the coordinates of the point that is [tex]\(\frac{3}{5}\)[/tex] of the way from [tex]\(A(-9, 3)\)[/tex] to [tex]\(B(21, -2)\)[/tex], we need to follow these steps:
1. Identify the coordinates of points A and B:
- [tex]\(A = (-9, 3)\)[/tex]
- [tex]\(B = (21, -2)\)[/tex]
2. Calculate the ratio which is [tex]\(\frac{3}{5}\)[/tex]:
- This indicates that the point we are looking for is [tex]\(\frac{3}{5}\)[/tex] of the total distance from A to B.
3. Determine the changes in the x-coordinate and y-coordinate from A to B:
- Change in x-coordinate ([tex]\(\Delta x\)[/tex]) = [tex]\(B_x - A_x = 21 - (-9) = 21 + 9 = 30\)[/tex]
- Change in y-coordinate ([tex]\(\Delta y\)[/tex]) = [tex]\(B_y - A_y = -2 - 3 = -5\)[/tex]
4. Apply the ratio to the changes in the coordinates:
- For the x-coordinate, the point is [tex]\(\frac{3}{5}\)[/tex] of the way: [tex]\[\text{New } x = A_x + \left(\frac{3}{5}\right) \times \Delta x = -9 + \left(\frac{3}{5}\right) \times 30\][/tex]
[tex]\[= -9 + 18 = 9\][/tex]
- For the y-coordinate, the point is [tex]\(\frac{3}{5}\)[/tex] of the way: [tex]\[\text{New } y = A_y + \left(\frac{3}{5}\right) \times \Delta y = 3 + \left(\frac{3}{5}\right) \times (-5)\][/tex]
[tex]\[= 3 - 3 = 0\][/tex]
5. Combine the new coordinates:
- Hence, the coordinates of the point that is [tex]\(\frac{3}{5}\)[/tex] of the way from A to B are [tex]\((9, 0)\)[/tex].
So, the correct answer is [tex]\(D\)[/tex].
1. Identify the coordinates of points A and B:
- [tex]\(A = (-9, 3)\)[/tex]
- [tex]\(B = (21, -2)\)[/tex]
2. Calculate the ratio which is [tex]\(\frac{3}{5}\)[/tex]:
- This indicates that the point we are looking for is [tex]\(\frac{3}{5}\)[/tex] of the total distance from A to B.
3. Determine the changes in the x-coordinate and y-coordinate from A to B:
- Change in x-coordinate ([tex]\(\Delta x\)[/tex]) = [tex]\(B_x - A_x = 21 - (-9) = 21 + 9 = 30\)[/tex]
- Change in y-coordinate ([tex]\(\Delta y\)[/tex]) = [tex]\(B_y - A_y = -2 - 3 = -5\)[/tex]
4. Apply the ratio to the changes in the coordinates:
- For the x-coordinate, the point is [tex]\(\frac{3}{5}\)[/tex] of the way: [tex]\[\text{New } x = A_x + \left(\frac{3}{5}\right) \times \Delta x = -9 + \left(\frac{3}{5}\right) \times 30\][/tex]
[tex]\[= -9 + 18 = 9\][/tex]
- For the y-coordinate, the point is [tex]\(\frac{3}{5}\)[/tex] of the way: [tex]\[\text{New } y = A_y + \left(\frac{3}{5}\right) \times \Delta y = 3 + \left(\frac{3}{5}\right) \times (-5)\][/tex]
[tex]\[= 3 - 3 = 0\][/tex]
5. Combine the new coordinates:
- Hence, the coordinates of the point that is [tex]\(\frac{3}{5}\)[/tex] of the way from A to B are [tex]\((9, 0)\)[/tex].
So, the correct answer is [tex]\(D\)[/tex].
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.