Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Answer:
To simplify \((3x^4)^5\), you apply the rules of exponents. Here's the step-by-step process:
1. Use the power of a power rule \((a^m)^n = a^{mn}\).
2. Distribute the exponent 5 to both the coefficient 3 and the term \(x^4\).
First, handle the coefficient:
\[(3)^5 = 3^5\]
Now, handle the variable with the exponent:
\[(x^4)^5 = x^{4 \cdot 5} = x^{20}\]
Combine both results:
\[(3x^4)^5 = 3^5 \cdot x^{20}\]
Now, calculate \(3^5\):
\[3^5 = 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 = 243\]
So, \((3x^4)^5\) simplifies to:
\[243x^{20}\]
Step-by-step explanation:
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.