Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Certainly! Let's walk through how to build the equation of the line based on the problem statement step-by-step.
### Step-by-Step Solution
1. Understand the Problem:
Myra charges a flat rate of [tex]$5 regardless of the miles driven. Additionally, she charges $[/tex]0.50 (50 cents) per mile driven.
2. Identify Given Information:
- The charge starts at [tex]$5, which means when no miles are driven (x = 0), the cost is $[/tex]5.
- The cost increases by [tex]$0.50 for each mile driven. 3. Determine the \( y \)-intercept and Slope: The y-intercept occurs at \( x = 0 \), where \( y \) is 5. So, \( y \)-intercept \( (b) = 5 \). The slope (m) is the rate of change in cost with respect to miles driven, which is $[/tex]0.50 per mile. Thus, [tex]\( m = 0.5 \)[/tex].
4. Form the Equation:
Using the slope-intercept form of a line [tex]\( y = mx + b \)[/tex]:
- [tex]\( y \)[/tex] is the total cost.
- [tex]\( x \)[/tex] is the number of miles driven.
- [tex]\( m \)[/tex] is the slope (0.5).
- [tex]\( b \)[/tex] is the intercept (5).
Therefore, the equation can be written as:
[tex]\[ y = 0.5x + 5 \][/tex]
Therefore, the equation that represents Myra's car service charges is [tex]\( y = 0.5x + 5 \)[/tex]. This equation shows that for each additional mile driven ([tex]\( x \)[/tex]), the total cost ([tex]\( y \)[/tex]) increases by [tex]$0.50, starting from the $[/tex]5 flat rate.
### Step-by-Step Solution
1. Understand the Problem:
Myra charges a flat rate of [tex]$5 regardless of the miles driven. Additionally, she charges $[/tex]0.50 (50 cents) per mile driven.
2. Identify Given Information:
- The charge starts at [tex]$5, which means when no miles are driven (x = 0), the cost is $[/tex]5.
- The cost increases by [tex]$0.50 for each mile driven. 3. Determine the \( y \)-intercept and Slope: The y-intercept occurs at \( x = 0 \), where \( y \) is 5. So, \( y \)-intercept \( (b) = 5 \). The slope (m) is the rate of change in cost with respect to miles driven, which is $[/tex]0.50 per mile. Thus, [tex]\( m = 0.5 \)[/tex].
4. Form the Equation:
Using the slope-intercept form of a line [tex]\( y = mx + b \)[/tex]:
- [tex]\( y \)[/tex] is the total cost.
- [tex]\( x \)[/tex] is the number of miles driven.
- [tex]\( m \)[/tex] is the slope (0.5).
- [tex]\( b \)[/tex] is the intercept (5).
Therefore, the equation can be written as:
[tex]\[ y = 0.5x + 5 \][/tex]
Therefore, the equation that represents Myra's car service charges is [tex]\( y = 0.5x + 5 \)[/tex]. This equation shows that for each additional mile driven ([tex]\( x \)[/tex]), the total cost ([tex]\( y \)[/tex]) increases by [tex]$0.50, starting from the $[/tex]5 flat rate.
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.