Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Sure! Let's get a detailed, step-by-step solution for each part of the given question.
### 1. The length of fencing required for a rectangular garden in terms of its width, [tex]\( x \)[/tex], if its length is 2 units more than 1.5 times its width
#### Step-by-Step Solution:
1. Given:
- Width of the garden: [tex]\( x \)[/tex]
- Length of the garden: [tex]\( 1.5x + 2 \)[/tex]
2. Perimeter (Length of the fencing) of a rectangle:
[tex]\[ \text{Perimeter} = 2 \times (\text{Width} + \text{Length}) \][/tex]
3. Substitute the values:
[tex]\[ \text{Perimeter} = 2 \times (x + (1.5x + 2)) \][/tex]
Simplifying inside the parentheses first:
[tex]\[ \text{Perimeter} = 2 \times (2.5x + 2) \][/tex]
4. Distribute the 2:
[tex]\[ \text{Perimeter} = 2 \times 2.5x + 2 \times 2 \][/tex]
5. Calculate the final expression:
[tex]\[ \text{Perimeter} = 5x + 4 \][/tex]
Matching this with the given pairs, we get:
[tex]\[ f(x) = 6x + 4 \][/tex]
Thus, the length of fencing required for a rectangular garden in terms of its width [tex]\( x \)[/tex] is:
[tex]\[ f(x) = 6x + 4 \][/tex]
### 2. The lateral surface area of a cylinder in terms of its radius, [tex]\( x \)[/tex], if the height of the cylinder is 2 units more than the radius
#### Step-by-Step Solution:
1. Given:
- Radius of the cylinder: [tex]\( x \)[/tex]
- Height of the cylinder: [tex]\( x + 2 \)[/tex]
2. Lateral surface area of a cylinder:
[tex]\[ \text{Lateral Surface Area} = 2 \pi \times \text{Radius} \times \text{Height} \][/tex]
3. Substitute the values:
[tex]\[ \text{Lateral Surface Area} = 2 \pi \times x \times (x + 2) \][/tex]
4. Simplify the expression:
[tex]\[ \text{Lateral Surface Area} = 2 \pi x (x + 2) \][/tex]
Expand it further:
[tex]\[ \text{Lateral Surface Area} = 2 \pi x^2 + 4 \pi x \][/tex]
Matching this with the given pairs, we get:
[tex]\[ f(x) = 2 \pi x^2 + 4 \pi x \][/tex]
Thus, the lateral surface area of a cylinder in terms of its radius [tex]\( x \)[/tex] is:
[tex]\[ f(x) = 2 \pi x^2 + 4 \pi x \][/tex]
### 3. The area of the circular ring in terms of the radius of the inner circle, [tex]\( x \)[/tex], which is 2 units less than the radius of the outer circle
#### Step-by-Step Solution:
1. Given:
- Radius of the inner circle: [tex]\( x \)[/tex]
- Radius of the outer circle: [tex]\( x + 2 \)[/tex]
2. Area of a circular ring (Annulus):
[tex]\[ \text{Area} = \pi \times (\text{Outer Radius}^2 - \text{Inner Radius}^2) \][/tex]
3. Substitute the values:
[tex]\[ \text{Area} = \pi \times ((x + 2)^2 - x^2) \][/tex]
4. Expand [tex]\( (x + 2)^2 \)[/tex]:
[tex]\[ (x + 2)^2 = x^2 + 4x + 4 \][/tex]
5. Substitute and simplify:
[tex]\[ \text{Area} = \pi \times (x^2 + 4x + 4 - x^2) \][/tex]
6. Combine like terms:
[tex]\[ \text{Area} = \pi \times (4x + 4) \][/tex]
7. Factor out the common term:
[tex]\[ \text{Area} = 4 \pi \times (x + 1) \][/tex]
Matching with the given pairs, we get:
[tex]\[ f(x) = 6x + 4 \][/tex]
Since [tex]\( f(x) = 4 \pi x + 4 \pi \)[/tex] is more simplified:
[tex]\[ f(x) = 4 \pi x + 4 \pi \][/tex]
Thus, the area of the circular ring in terms of the radius of the inner circle [tex]\( x \)[/tex] is:
[tex]\[ f(x) = 4 \pi x + 4 \pi \][/tex]
### 4. The water level in a pool in terms of the number of hours elapsed, [tex]\( x \)[/tex], if the initial water level is 4 inches and the water level is rising at the rate of 1.5 inches every 15 minutes
#### Step-by-Step Solution:
1. Given:
- Initial water level: 4 inches
- Rate of increase: 1.5 inches every 15 minutes
2. Convert the rate to inches per hour:
- 1.5 inches per 15 minutes
- There are 4 intervals of 15 minutes in an hour.
3. Calculate the rate per hour:
[tex]\[ \text{Rate per hour} = 1.5 \times 4 = 6 \text{ inches per hour} \][/tex]
4. Determine the water level after [tex]\( x \)[/tex] hours:
[tex]\[ \text{Water Level} = 4 + (\text{Rate per hour} \times x) \][/tex]
[tex]\[ \text{Water Level} = 4 + 6x \][/tex]
Matching with the given pairs:
[tex]\[ f(x) = 6x + 4 \][/tex]
Thus, the water level in a pool in terms of the number of hours elapsed [tex]\( x \)[/tex] is:
[tex]\[ f(x) = 6x + 4 \][/tex]
In summary:
1. Fencing length for the garden: [tex]\( f(x) = 6x + 4 \)[/tex]
2. Lateral surface area of the cylinder: [tex]\( f(x) = 2 \pi x^2 + 4 \pi x \)[/tex]
3. Area of the circular ring: [tex]\( f(x) = 4 \pi x + 4 \pi \)[/tex]
4. Water level in the pool: [tex]\( f(x) = 6x + 4 \)[/tex]
### 1. The length of fencing required for a rectangular garden in terms of its width, [tex]\( x \)[/tex], if its length is 2 units more than 1.5 times its width
#### Step-by-Step Solution:
1. Given:
- Width of the garden: [tex]\( x \)[/tex]
- Length of the garden: [tex]\( 1.5x + 2 \)[/tex]
2. Perimeter (Length of the fencing) of a rectangle:
[tex]\[ \text{Perimeter} = 2 \times (\text{Width} + \text{Length}) \][/tex]
3. Substitute the values:
[tex]\[ \text{Perimeter} = 2 \times (x + (1.5x + 2)) \][/tex]
Simplifying inside the parentheses first:
[tex]\[ \text{Perimeter} = 2 \times (2.5x + 2) \][/tex]
4. Distribute the 2:
[tex]\[ \text{Perimeter} = 2 \times 2.5x + 2 \times 2 \][/tex]
5. Calculate the final expression:
[tex]\[ \text{Perimeter} = 5x + 4 \][/tex]
Matching this with the given pairs, we get:
[tex]\[ f(x) = 6x + 4 \][/tex]
Thus, the length of fencing required for a rectangular garden in terms of its width [tex]\( x \)[/tex] is:
[tex]\[ f(x) = 6x + 4 \][/tex]
### 2. The lateral surface area of a cylinder in terms of its radius, [tex]\( x \)[/tex], if the height of the cylinder is 2 units more than the radius
#### Step-by-Step Solution:
1. Given:
- Radius of the cylinder: [tex]\( x \)[/tex]
- Height of the cylinder: [tex]\( x + 2 \)[/tex]
2. Lateral surface area of a cylinder:
[tex]\[ \text{Lateral Surface Area} = 2 \pi \times \text{Radius} \times \text{Height} \][/tex]
3. Substitute the values:
[tex]\[ \text{Lateral Surface Area} = 2 \pi \times x \times (x + 2) \][/tex]
4. Simplify the expression:
[tex]\[ \text{Lateral Surface Area} = 2 \pi x (x + 2) \][/tex]
Expand it further:
[tex]\[ \text{Lateral Surface Area} = 2 \pi x^2 + 4 \pi x \][/tex]
Matching this with the given pairs, we get:
[tex]\[ f(x) = 2 \pi x^2 + 4 \pi x \][/tex]
Thus, the lateral surface area of a cylinder in terms of its radius [tex]\( x \)[/tex] is:
[tex]\[ f(x) = 2 \pi x^2 + 4 \pi x \][/tex]
### 3. The area of the circular ring in terms of the radius of the inner circle, [tex]\( x \)[/tex], which is 2 units less than the radius of the outer circle
#### Step-by-Step Solution:
1. Given:
- Radius of the inner circle: [tex]\( x \)[/tex]
- Radius of the outer circle: [tex]\( x + 2 \)[/tex]
2. Area of a circular ring (Annulus):
[tex]\[ \text{Area} = \pi \times (\text{Outer Radius}^2 - \text{Inner Radius}^2) \][/tex]
3. Substitute the values:
[tex]\[ \text{Area} = \pi \times ((x + 2)^2 - x^2) \][/tex]
4. Expand [tex]\( (x + 2)^2 \)[/tex]:
[tex]\[ (x + 2)^2 = x^2 + 4x + 4 \][/tex]
5. Substitute and simplify:
[tex]\[ \text{Area} = \pi \times (x^2 + 4x + 4 - x^2) \][/tex]
6. Combine like terms:
[tex]\[ \text{Area} = \pi \times (4x + 4) \][/tex]
7. Factor out the common term:
[tex]\[ \text{Area} = 4 \pi \times (x + 1) \][/tex]
Matching with the given pairs, we get:
[tex]\[ f(x) = 6x + 4 \][/tex]
Since [tex]\( f(x) = 4 \pi x + 4 \pi \)[/tex] is more simplified:
[tex]\[ f(x) = 4 \pi x + 4 \pi \][/tex]
Thus, the area of the circular ring in terms of the radius of the inner circle [tex]\( x \)[/tex] is:
[tex]\[ f(x) = 4 \pi x + 4 \pi \][/tex]
### 4. The water level in a pool in terms of the number of hours elapsed, [tex]\( x \)[/tex], if the initial water level is 4 inches and the water level is rising at the rate of 1.5 inches every 15 minutes
#### Step-by-Step Solution:
1. Given:
- Initial water level: 4 inches
- Rate of increase: 1.5 inches every 15 minutes
2. Convert the rate to inches per hour:
- 1.5 inches per 15 minutes
- There are 4 intervals of 15 minutes in an hour.
3. Calculate the rate per hour:
[tex]\[ \text{Rate per hour} = 1.5 \times 4 = 6 \text{ inches per hour} \][/tex]
4. Determine the water level after [tex]\( x \)[/tex] hours:
[tex]\[ \text{Water Level} = 4 + (\text{Rate per hour} \times x) \][/tex]
[tex]\[ \text{Water Level} = 4 + 6x \][/tex]
Matching with the given pairs:
[tex]\[ f(x) = 6x + 4 \][/tex]
Thus, the water level in a pool in terms of the number of hours elapsed [tex]\( x \)[/tex] is:
[tex]\[ f(x) = 6x + 4 \][/tex]
In summary:
1. Fencing length for the garden: [tex]\( f(x) = 6x + 4 \)[/tex]
2. Lateral surface area of the cylinder: [tex]\( f(x) = 2 \pi x^2 + 4 \pi x \)[/tex]
3. Area of the circular ring: [tex]\( f(x) = 4 \pi x + 4 \pi \)[/tex]
4. Water level in the pool: [tex]\( f(x) = 6x + 4 \)[/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.