Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Let's determine the domain of the composite function [tex]\((f \circ g)(x)\)[/tex], which is defined as [tex]\(f(g(x))\)[/tex].
### Step-by-Step Solution:
1. Understand the individual functions:
- Function [tex]\(f(x)\)[/tex] is defined as [tex]\(f(x) = x^2 - 1\)[/tex].
- Function [tex]\(g(x)\)[/tex] is defined as [tex]\(g(x) = 2x - 3\)[/tex].
2. Determine the domain of [tex]\(g(x)\)[/tex]:
- [tex]\(g(x) = 2x - 3\)[/tex] is a linear function.
- Linear functions are defined for all real numbers.
- Hence, the domain of [tex]\(g(x)\)[/tex] is [tex]\((-\infty, \infty)\)[/tex].
3. Determine the domain of [tex]\(f(x)\)[/tex]:
- [tex]\(f(x) = x^2 - 1\)[/tex] is a polynomial function.
- Polynomial functions are also defined for all real numbers.
- Thus, the domain of [tex]\(f(x)\)[/tex] is [tex]\((-\infty, \infty)\)[/tex].
4. Composite function [tex]\(f(g(x))\)[/tex]:
- The domain of the composite function [tex]\(f(g(x))\)[/tex] is determined by the domain of [tex]\(g(x)\)[/tex] first and then the domain of [tex]\(f(x)\)[/tex] applied to [tex]\(g(x)\)[/tex].
5. Apply the domains:
- Since both [tex]\(g(x)\)[/tex] and [tex]\(f(x)\)[/tex] are defined for all real numbers, the composite function [tex]\(f(g(x))\)[/tex] will also be defined for all real numbers.
6. Conclusion:
- The domain of [tex]\((f \circ g)(x)\)[/tex] is [tex]\((-\infty, \infty)\)[/tex].
Therefore, the domain of [tex]\((f \circ g)(x)\)[/tex] is [tex]\((-\infty, \infty)\)[/tex]. The correct answer is:
[tex]\[ \boxed{(-\infty, \infty)} \][/tex]
### Step-by-Step Solution:
1. Understand the individual functions:
- Function [tex]\(f(x)\)[/tex] is defined as [tex]\(f(x) = x^2 - 1\)[/tex].
- Function [tex]\(g(x)\)[/tex] is defined as [tex]\(g(x) = 2x - 3\)[/tex].
2. Determine the domain of [tex]\(g(x)\)[/tex]:
- [tex]\(g(x) = 2x - 3\)[/tex] is a linear function.
- Linear functions are defined for all real numbers.
- Hence, the domain of [tex]\(g(x)\)[/tex] is [tex]\((-\infty, \infty)\)[/tex].
3. Determine the domain of [tex]\(f(x)\)[/tex]:
- [tex]\(f(x) = x^2 - 1\)[/tex] is a polynomial function.
- Polynomial functions are also defined for all real numbers.
- Thus, the domain of [tex]\(f(x)\)[/tex] is [tex]\((-\infty, \infty)\)[/tex].
4. Composite function [tex]\(f(g(x))\)[/tex]:
- The domain of the composite function [tex]\(f(g(x))\)[/tex] is determined by the domain of [tex]\(g(x)\)[/tex] first and then the domain of [tex]\(f(x)\)[/tex] applied to [tex]\(g(x)\)[/tex].
5. Apply the domains:
- Since both [tex]\(g(x)\)[/tex] and [tex]\(f(x)\)[/tex] are defined for all real numbers, the composite function [tex]\(f(g(x))\)[/tex] will also be defined for all real numbers.
6. Conclusion:
- The domain of [tex]\((f \circ g)(x)\)[/tex] is [tex]\((-\infty, \infty)\)[/tex].
Therefore, the domain of [tex]\((f \circ g)(x)\)[/tex] is [tex]\((-\infty, \infty)\)[/tex]. The correct answer is:
[tex]\[ \boxed{(-\infty, \infty)} \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.