Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Let's determine the domain of the composite function [tex]\((f \circ g)(x)\)[/tex], which is defined as [tex]\(f(g(x))\)[/tex].
### Step-by-Step Solution:
1. Understand the individual functions:
- Function [tex]\(f(x)\)[/tex] is defined as [tex]\(f(x) = x^2 - 1\)[/tex].
- Function [tex]\(g(x)\)[/tex] is defined as [tex]\(g(x) = 2x - 3\)[/tex].
2. Determine the domain of [tex]\(g(x)\)[/tex]:
- [tex]\(g(x) = 2x - 3\)[/tex] is a linear function.
- Linear functions are defined for all real numbers.
- Hence, the domain of [tex]\(g(x)\)[/tex] is [tex]\((-\infty, \infty)\)[/tex].
3. Determine the domain of [tex]\(f(x)\)[/tex]:
- [tex]\(f(x) = x^2 - 1\)[/tex] is a polynomial function.
- Polynomial functions are also defined for all real numbers.
- Thus, the domain of [tex]\(f(x)\)[/tex] is [tex]\((-\infty, \infty)\)[/tex].
4. Composite function [tex]\(f(g(x))\)[/tex]:
- The domain of the composite function [tex]\(f(g(x))\)[/tex] is determined by the domain of [tex]\(g(x)\)[/tex] first and then the domain of [tex]\(f(x)\)[/tex] applied to [tex]\(g(x)\)[/tex].
5. Apply the domains:
- Since both [tex]\(g(x)\)[/tex] and [tex]\(f(x)\)[/tex] are defined for all real numbers, the composite function [tex]\(f(g(x))\)[/tex] will also be defined for all real numbers.
6. Conclusion:
- The domain of [tex]\((f \circ g)(x)\)[/tex] is [tex]\((-\infty, \infty)\)[/tex].
Therefore, the domain of [tex]\((f \circ g)(x)\)[/tex] is [tex]\((-\infty, \infty)\)[/tex]. The correct answer is:
[tex]\[ \boxed{(-\infty, \infty)} \][/tex]
### Step-by-Step Solution:
1. Understand the individual functions:
- Function [tex]\(f(x)\)[/tex] is defined as [tex]\(f(x) = x^2 - 1\)[/tex].
- Function [tex]\(g(x)\)[/tex] is defined as [tex]\(g(x) = 2x - 3\)[/tex].
2. Determine the domain of [tex]\(g(x)\)[/tex]:
- [tex]\(g(x) = 2x - 3\)[/tex] is a linear function.
- Linear functions are defined for all real numbers.
- Hence, the domain of [tex]\(g(x)\)[/tex] is [tex]\((-\infty, \infty)\)[/tex].
3. Determine the domain of [tex]\(f(x)\)[/tex]:
- [tex]\(f(x) = x^2 - 1\)[/tex] is a polynomial function.
- Polynomial functions are also defined for all real numbers.
- Thus, the domain of [tex]\(f(x)\)[/tex] is [tex]\((-\infty, \infty)\)[/tex].
4. Composite function [tex]\(f(g(x))\)[/tex]:
- The domain of the composite function [tex]\(f(g(x))\)[/tex] is determined by the domain of [tex]\(g(x)\)[/tex] first and then the domain of [tex]\(f(x)\)[/tex] applied to [tex]\(g(x)\)[/tex].
5. Apply the domains:
- Since both [tex]\(g(x)\)[/tex] and [tex]\(f(x)\)[/tex] are defined for all real numbers, the composite function [tex]\(f(g(x))\)[/tex] will also be defined for all real numbers.
6. Conclusion:
- The domain of [tex]\((f \circ g)(x)\)[/tex] is [tex]\((-\infty, \infty)\)[/tex].
Therefore, the domain of [tex]\((f \circ g)(x)\)[/tex] is [tex]\((-\infty, \infty)\)[/tex]. The correct answer is:
[tex]\[ \boxed{(-\infty, \infty)} \][/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.