Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To classify the polynomial [tex]\(3x^4 - 9x^3 - 3x^2 + 6\)[/tex], we need to determine its degree. The degree of a polynomial is the highest power of the variable [tex]\(x\)[/tex] that appears in the polynomial with a non-zero coefficient. Let's examine the terms of the polynomial:
- The first term is [tex]\(3x^4\)[/tex] with a degree of 4.
- The second term is [tex]\(-9x^3\)[/tex] with a degree of 3.
- The third term is [tex]\(-3x^2\)[/tex] with a degree of 2.
- The constant term [tex]\(6\)[/tex] has a degree of 0 (since it can be considered as [tex]\(6x^0\)[/tex]).
Among these terms, the highest degree is 4, which comes from the term [tex]\(3x^4\)[/tex].
Therefore, the polynomial [tex]\(3x^4 - 9x^3 - 3x^2 + 6\)[/tex] is a 4th degree polynomial.
The correct classification is:
4th degree polynomial
- The first term is [tex]\(3x^4\)[/tex] with a degree of 4.
- The second term is [tex]\(-9x^3\)[/tex] with a degree of 3.
- The third term is [tex]\(-3x^2\)[/tex] with a degree of 2.
- The constant term [tex]\(6\)[/tex] has a degree of 0 (since it can be considered as [tex]\(6x^0\)[/tex]).
Among these terms, the highest degree is 4, which comes from the term [tex]\(3x^4\)[/tex].
Therefore, the polynomial [tex]\(3x^4 - 9x^3 - 3x^2 + 6\)[/tex] is a 4th degree polynomial.
The correct classification is:
4th degree polynomial
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.