Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine the range of the function [tex]\( y = \sqrt[3]{x + 8} \)[/tex], we need to understand how the function behaves as we vary the value of [tex]\( x \)[/tex].
### Step-by-Step Solution
1. Understand the Cubic Root Function:
- The function [tex]\( y = \sqrt[3]{x} \)[/tex] is defined for all real [tex]\( x \)[/tex]. This function can take any real value because the cubic root of a real number can be any real number. This means that we can plug in any real value for [tex]\( x \)[/tex] and get a real value for [tex]\( y \)[/tex].
2. Analyze the Transformation [tex]\( x + 8 \)[/tex]:
- The function given is [tex]\( y = \sqrt[3]{x + 8} \)[/tex]. This is a horizontal shift of the basic cubic root function [tex]\( y = \sqrt[3]{x} \)[/tex] to the left by 8 units, thanks to the [tex]\( x + 8 \)[/tex] inside the cubic root.
3. Determine the Range:
- Since the basic function [tex]\( y = \sqrt[3]{x} \)[/tex] has a range of all real numbers (i.e., [tex]\( -\infty < y < \infty \)[/tex]), and the horizontal shift does not affect the range, the function [tex]\( y = \sqrt[3]{x + 8} \)[/tex] still has a range of all real numbers.
Therefore, the range of the function [tex]\( y = \sqrt[3]{x + 8} \)[/tex] is:
[tex]\[ -\infty < y < \infty \][/tex]
So, the correct choice from the given options is:
[tex]\[ -\infty < y < \infty \][/tex]
### Step-by-Step Solution
1. Understand the Cubic Root Function:
- The function [tex]\( y = \sqrt[3]{x} \)[/tex] is defined for all real [tex]\( x \)[/tex]. This function can take any real value because the cubic root of a real number can be any real number. This means that we can plug in any real value for [tex]\( x \)[/tex] and get a real value for [tex]\( y \)[/tex].
2. Analyze the Transformation [tex]\( x + 8 \)[/tex]:
- The function given is [tex]\( y = \sqrt[3]{x + 8} \)[/tex]. This is a horizontal shift of the basic cubic root function [tex]\( y = \sqrt[3]{x} \)[/tex] to the left by 8 units, thanks to the [tex]\( x + 8 \)[/tex] inside the cubic root.
3. Determine the Range:
- Since the basic function [tex]\( y = \sqrt[3]{x} \)[/tex] has a range of all real numbers (i.e., [tex]\( -\infty < y < \infty \)[/tex]), and the horizontal shift does not affect the range, the function [tex]\( y = \sqrt[3]{x + 8} \)[/tex] still has a range of all real numbers.
Therefore, the range of the function [tex]\( y = \sqrt[3]{x + 8} \)[/tex] is:
[tex]\[ -\infty < y < \infty \][/tex]
So, the correct choice from the given options is:
[tex]\[ -\infty < y < \infty \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.