Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine the range of the function [tex]\( y = \sqrt[3]{x + 8} \)[/tex], we need to understand how the function behaves as we vary the value of [tex]\( x \)[/tex].
### Step-by-Step Solution
1. Understand the Cubic Root Function:
- The function [tex]\( y = \sqrt[3]{x} \)[/tex] is defined for all real [tex]\( x \)[/tex]. This function can take any real value because the cubic root of a real number can be any real number. This means that we can plug in any real value for [tex]\( x \)[/tex] and get a real value for [tex]\( y \)[/tex].
2. Analyze the Transformation [tex]\( x + 8 \)[/tex]:
- The function given is [tex]\( y = \sqrt[3]{x + 8} \)[/tex]. This is a horizontal shift of the basic cubic root function [tex]\( y = \sqrt[3]{x} \)[/tex] to the left by 8 units, thanks to the [tex]\( x + 8 \)[/tex] inside the cubic root.
3. Determine the Range:
- Since the basic function [tex]\( y = \sqrt[3]{x} \)[/tex] has a range of all real numbers (i.e., [tex]\( -\infty < y < \infty \)[/tex]), and the horizontal shift does not affect the range, the function [tex]\( y = \sqrt[3]{x + 8} \)[/tex] still has a range of all real numbers.
Therefore, the range of the function [tex]\( y = \sqrt[3]{x + 8} \)[/tex] is:
[tex]\[ -\infty < y < \infty \][/tex]
So, the correct choice from the given options is:
[tex]\[ -\infty < y < \infty \][/tex]
### Step-by-Step Solution
1. Understand the Cubic Root Function:
- The function [tex]\( y = \sqrt[3]{x} \)[/tex] is defined for all real [tex]\( x \)[/tex]. This function can take any real value because the cubic root of a real number can be any real number. This means that we can plug in any real value for [tex]\( x \)[/tex] and get a real value for [tex]\( y \)[/tex].
2. Analyze the Transformation [tex]\( x + 8 \)[/tex]:
- The function given is [tex]\( y = \sqrt[3]{x + 8} \)[/tex]. This is a horizontal shift of the basic cubic root function [tex]\( y = \sqrt[3]{x} \)[/tex] to the left by 8 units, thanks to the [tex]\( x + 8 \)[/tex] inside the cubic root.
3. Determine the Range:
- Since the basic function [tex]\( y = \sqrt[3]{x} \)[/tex] has a range of all real numbers (i.e., [tex]\( -\infty < y < \infty \)[/tex]), and the horizontal shift does not affect the range, the function [tex]\( y = \sqrt[3]{x + 8} \)[/tex] still has a range of all real numbers.
Therefore, the range of the function [tex]\( y = \sqrt[3]{x + 8} \)[/tex] is:
[tex]\[ -\infty < y < \infty \][/tex]
So, the correct choice from the given options is:
[tex]\[ -\infty < y < \infty \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.