Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

Select the correct answer.

Solve the following quadratic equation:
[tex](x+4)^2=25[/tex]

A. [tex]x=9[/tex] and [tex]x=-1[/tex]

B. [tex]x=-9[/tex] and [tex]x=-1[/tex]

C. [tex]x=-9[/tex] and [tex]x=1[/tex]

D. [tex]x=1[/tex] and [tex]x=-1[/tex]


Sagot :

To solve the quadratic equation [tex]\((x+4)^2 = 25\)[/tex], follow these steps:

1. Isolate the squared term:
[tex]\[ (x + 4)^2 = 25 \][/tex]

2. Take the square root of both sides to remove the square on the left side. When you take the square root of both sides, remember to consider both the positive and negative roots:
[tex]\[ x + 4 = \pm \sqrt{25} \][/tex]

3. Calculate the square roots:
[tex]\[ \sqrt{25} = 5 \][/tex]
[tex]\[ \pm \sqrt{25} = \pm 5 \][/tex]
So, we have two equations:
[tex]\[ x + 4 = 5 \][/tex]
and
[tex]\[ x + 4 = -5 \][/tex]

4. Solve for [tex]\(x\)[/tex] in both cases:
- First case: [tex]\( x + 4 = 5 \)[/tex]
[tex]\[ x = 5 - 4 \][/tex]
[tex]\[ x = 1 \][/tex]

- Second case: [tex]\( x + 4 = -5 \)[/tex]
[tex]\[ x = -5 - 4 \][/tex]
[tex]\[ x = -9 \][/tex]

The solutions to the equation are [tex]\( x = 1 \)[/tex] and [tex]\( x = -9 \)[/tex].

Hence, the correct answer is:
[tex]\[ C. \ x = -9 \ \text{and} \ x = 1 \][/tex]