Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine the domain of the function [tex]\( f(x) = \sqrt{4x + 9} + 2 \)[/tex], we need to ensure that the expression within the square root is non-negative (i.e., it must be greater than or equal to zero) since the square root of a negative number is not defined in the set of real numbers.
Let's analyze the expression under the square root:
[tex]\[ 4x + 9 \][/tex]
This expression must satisfy the following condition:
[tex]\[ 4x + 9 \geq 0 \][/tex]
Now, let's solve this inequality step-by-step to find the domain:
1. Isolate the term involving [tex]\( x \)[/tex]:
[tex]\[ 4x + 9 \geq 0 \][/tex]
2. Subtract 9 from both sides to isolate the [tex]\( 4x \)[/tex] term:
[tex]\[ 4x \geq -9 \][/tex]
3. Divide both sides by 4 to solve for [tex]\( x \)[/tex]:
[tex]\[ x \geq -\frac{9}{4} \][/tex]
So, the inequality that we need to satisfy to find the domain of [tex]\( f(x) \)[/tex] is:
[tex]\[ 4x + 9 \geq 0 \][/tex]
Thus, the correct inequality from the given options is:
[tex]\[ 4x + 9 \geq 0 \][/tex]
The domain of the function [tex]\( f(x) = \sqrt{4x + 9} + 2 \)[/tex] is all [tex]\( x \)[/tex] such that [tex]\( x \geq -\frac{9}{4} \)[/tex].
Let's analyze the expression under the square root:
[tex]\[ 4x + 9 \][/tex]
This expression must satisfy the following condition:
[tex]\[ 4x + 9 \geq 0 \][/tex]
Now, let's solve this inequality step-by-step to find the domain:
1. Isolate the term involving [tex]\( x \)[/tex]:
[tex]\[ 4x + 9 \geq 0 \][/tex]
2. Subtract 9 from both sides to isolate the [tex]\( 4x \)[/tex] term:
[tex]\[ 4x \geq -9 \][/tex]
3. Divide both sides by 4 to solve for [tex]\( x \)[/tex]:
[tex]\[ x \geq -\frac{9}{4} \][/tex]
So, the inequality that we need to satisfy to find the domain of [tex]\( f(x) \)[/tex] is:
[tex]\[ 4x + 9 \geq 0 \][/tex]
Thus, the correct inequality from the given options is:
[tex]\[ 4x + 9 \geq 0 \][/tex]
The domain of the function [tex]\( f(x) = \sqrt{4x + 9} + 2 \)[/tex] is all [tex]\( x \)[/tex] such that [tex]\( x \geq -\frac{9}{4} \)[/tex].
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.