Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Certainly! Let's solve this step-by-step.
We are given that the area of a circle is [tex]\( 144\pi \)[/tex].
### Step 1: Recall the formula for the area of a circle
The area [tex]\( A \)[/tex] of a circle is given by the formula:
[tex]\[ A = \pi r^2 \][/tex]
where [tex]\( r \)[/tex] is the radius of the circle.
### Step 2: Solve for [tex]\( r \)[/tex] (the radius)
We know the area:
[tex]\[ A = 144\pi \][/tex]
Using the area formula:
[tex]\[ 144\pi = \pi r^2 \][/tex]
To find [tex]\( r \)[/tex], we first divide both sides of the equation by [tex]\( \pi \)[/tex]:
[tex]\[ 144 = r^2 \][/tex]
Next, we take the square root of both sides to solve for [tex]\( r \)[/tex]:
[tex]\[ r = \sqrt{144} \][/tex]
[tex]\[ r = 12 \][/tex]
### Step 3: Recall the formula for the circumference of a circle
The circumference [tex]\( C \)[/tex] of a circle is given by the formula:
[tex]\[ C = 2\pi r \][/tex]
### Step 4: Substitute the radius into the circumference formula
Using the radius [tex]\( r = 12 \)[/tex]:
[tex]\[ C = 2\pi \times 12 \][/tex]
[tex]\[ C = 24\pi \][/tex]
### Step 5: Calculate the numerical value (if needed)
To express the circumference numerically:
[tex]\[ C \approx 24 \times 3.14159 \][/tex]
[tex]\[ C \approx 75.39822368615503 \][/tex]
Thus, the radius of the circle is [tex]\( 12 \)[/tex] and the circumference is approximately [tex]\( 75.40 \)[/tex].
We are given that the area of a circle is [tex]\( 144\pi \)[/tex].
### Step 1: Recall the formula for the area of a circle
The area [tex]\( A \)[/tex] of a circle is given by the formula:
[tex]\[ A = \pi r^2 \][/tex]
where [tex]\( r \)[/tex] is the radius of the circle.
### Step 2: Solve for [tex]\( r \)[/tex] (the radius)
We know the area:
[tex]\[ A = 144\pi \][/tex]
Using the area formula:
[tex]\[ 144\pi = \pi r^2 \][/tex]
To find [tex]\( r \)[/tex], we first divide both sides of the equation by [tex]\( \pi \)[/tex]:
[tex]\[ 144 = r^2 \][/tex]
Next, we take the square root of both sides to solve for [tex]\( r \)[/tex]:
[tex]\[ r = \sqrt{144} \][/tex]
[tex]\[ r = 12 \][/tex]
### Step 3: Recall the formula for the circumference of a circle
The circumference [tex]\( C \)[/tex] of a circle is given by the formula:
[tex]\[ C = 2\pi r \][/tex]
### Step 4: Substitute the radius into the circumference formula
Using the radius [tex]\( r = 12 \)[/tex]:
[tex]\[ C = 2\pi \times 12 \][/tex]
[tex]\[ C = 24\pi \][/tex]
### Step 5: Calculate the numerical value (if needed)
To express the circumference numerically:
[tex]\[ C \approx 24 \times 3.14159 \][/tex]
[tex]\[ C \approx 75.39822368615503 \][/tex]
Thus, the radius of the circle is [tex]\( 12 \)[/tex] and the circumference is approximately [tex]\( 75.40 \)[/tex].
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.