Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To calculate the final enthalpy of the overall chemical equation [tex]\( C(s) + H_2O(g) \rightarrow CO(g) + H_2(g) \)[/tex], we need to consider the following steps:
### Step-by-Step Solution
1. Given Intermediate Reactions and Their Enthalpies:
[tex]\[ \begin{array}{ll} \text{(1)} \quad C(s) + O_2(g) \rightarrow CO_2(g) & \Delta H_1 = -393.5 \text{ kJ} \\ \text{(2)} \quad 2 CO(g) + O_2(g) \rightarrow 2 CO_2(g) & \Delta H_2 = -566.0 \text{ kJ} \\ \text{(3)} \quad 2 H_2O(g) \rightarrow 2 H_2(g) + O_2(g) & \Delta H_3 = 483.6 \text{ kJ} \end{array} \][/tex]
2. Reverse the First Reaction:
Since we need [tex]\( C(s) \)[/tex] to appear as a product in the final equation, we reverse the first reaction:
[tex]\[ \text{Reverse of (1)} \quad CO_2(g) \rightarrow C(s) + O_2(g) \][/tex]
When we reverse a reaction, the sign of the enthalpy change also reverses:
[tex]\[ \Delta H_1 = +393.5 \text{ kJ} \][/tex]
3. Hess's Law:
According to Hess's Law, the enthalpy change for the overall reaction is the sum of the enthalpy changes of the individual steps.
4. Match the Final Reaction:
We aim to derive [tex]\( C(s) + H_2O(g) \rightarrow CO(g) + H_2(g) \)[/tex] from these intermediate reactions.
- Step 1: Use the reversed first reaction:
[tex]\[ CO_2(g) \rightarrow C(s) + O_2(g) \quad (\Delta H = +393.5 \text{ kJ}) \][/tex]
- Step 2: Use the second reaction as is:
[tex]\[ 2 CO(g) + O_2(g) \rightarrow 2 CO_2(g) \quad (\Delta H = -566.0 \text{ kJ}) \][/tex]
- Step 3: Use the third reaction as is:
[tex]\[ 2 H_2O(g) \rightarrow 2 H_2(g) + O_2(g) \quad (\Delta H = 483.6 \text{ kJ}) \][/tex]
5. Combine Equations:
- Reversed first reaction gives:
[tex]\[ CO_2(g) \rightarrow C(s) + O_2(g) \quad (\Delta H = 393.5 \text{ kJ}) \][/tex]
- Second reaction:
[tex]\[ CO(g) \rightarrow 0.5 O_2(g) + CO_2(g) \quad (\frac{-566.0}{2} = -283.0 \text{ kJ}) \][/tex]
- Third reaction:
[tex]\[ H_2O(g) \rightarrow H_2(g) + 0.5 O_2(g) \quad (\frac{483.6}{2} = 241.8 \text{ kJ}) \][/tex]
6. Sum of Enthalpies:
[tex]\[ \Delta H_{\text{first reversed}} + \Delta H_{\text{second}} + \Delta H_{\text{third}} = 393.5 \text{ kJ} + (-283.0 \text{ kJ}) + 241.8 \text{ kJ} \][/tex]
7. Calculate the Final Enthalpy:
[tex]\[ \Delta H_{\text{overall}} = 393.5 \text{ kJ} + (-283.0 \text{ kJ}) + 241.8 \text{ kJ} = 311.1 \text{ kJ} \][/tex]
Therefore, the enthalpy change for the overall reaction [tex]\( C(s) + H_2O(g) \rightarrow CO(g) + H_2(g) \)[/tex] is [tex]\( 311.1 \text{ kJ} \)[/tex].
### Step-by-Step Solution
1. Given Intermediate Reactions and Their Enthalpies:
[tex]\[ \begin{array}{ll} \text{(1)} \quad C(s) + O_2(g) \rightarrow CO_2(g) & \Delta H_1 = -393.5 \text{ kJ} \\ \text{(2)} \quad 2 CO(g) + O_2(g) \rightarrow 2 CO_2(g) & \Delta H_2 = -566.0 \text{ kJ} \\ \text{(3)} \quad 2 H_2O(g) \rightarrow 2 H_2(g) + O_2(g) & \Delta H_3 = 483.6 \text{ kJ} \end{array} \][/tex]
2. Reverse the First Reaction:
Since we need [tex]\( C(s) \)[/tex] to appear as a product in the final equation, we reverse the first reaction:
[tex]\[ \text{Reverse of (1)} \quad CO_2(g) \rightarrow C(s) + O_2(g) \][/tex]
When we reverse a reaction, the sign of the enthalpy change also reverses:
[tex]\[ \Delta H_1 = +393.5 \text{ kJ} \][/tex]
3. Hess's Law:
According to Hess's Law, the enthalpy change for the overall reaction is the sum of the enthalpy changes of the individual steps.
4. Match the Final Reaction:
We aim to derive [tex]\( C(s) + H_2O(g) \rightarrow CO(g) + H_2(g) \)[/tex] from these intermediate reactions.
- Step 1: Use the reversed first reaction:
[tex]\[ CO_2(g) \rightarrow C(s) + O_2(g) \quad (\Delta H = +393.5 \text{ kJ}) \][/tex]
- Step 2: Use the second reaction as is:
[tex]\[ 2 CO(g) + O_2(g) \rightarrow 2 CO_2(g) \quad (\Delta H = -566.0 \text{ kJ}) \][/tex]
- Step 3: Use the third reaction as is:
[tex]\[ 2 H_2O(g) \rightarrow 2 H_2(g) + O_2(g) \quad (\Delta H = 483.6 \text{ kJ}) \][/tex]
5. Combine Equations:
- Reversed first reaction gives:
[tex]\[ CO_2(g) \rightarrow C(s) + O_2(g) \quad (\Delta H = 393.5 \text{ kJ}) \][/tex]
- Second reaction:
[tex]\[ CO(g) \rightarrow 0.5 O_2(g) + CO_2(g) \quad (\frac{-566.0}{2} = -283.0 \text{ kJ}) \][/tex]
- Third reaction:
[tex]\[ H_2O(g) \rightarrow H_2(g) + 0.5 O_2(g) \quad (\frac{483.6}{2} = 241.8 \text{ kJ}) \][/tex]
6. Sum of Enthalpies:
[tex]\[ \Delta H_{\text{first reversed}} + \Delta H_{\text{second}} + \Delta H_{\text{third}} = 393.5 \text{ kJ} + (-283.0 \text{ kJ}) + 241.8 \text{ kJ} \][/tex]
7. Calculate the Final Enthalpy:
[tex]\[ \Delta H_{\text{overall}} = 393.5 \text{ kJ} + (-283.0 \text{ kJ}) + 241.8 \text{ kJ} = 311.1 \text{ kJ} \][/tex]
Therefore, the enthalpy change for the overall reaction [tex]\( C(s) + H_2O(g) \rightarrow CO(g) + H_2(g) \)[/tex] is [tex]\( 311.1 \text{ kJ} \)[/tex].
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.