At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To graph the quadratic equation [tex]\(y = 3x^2 - 5x - 3\)[/tex] and find its [tex]\(x\)[/tex]-intercepts, follow these steps:
1. Open the Graphing App:
Begin by opening your preferred graphing app or tool.
2. Input the Equation:
Type the equation into the graphing app exactly as:
[tex]\[ y = 3x^{\wedge}2 - 5x - 3 \][/tex]
Make sure to use the [tex]\(\wedge\)[/tex] key for exponents and to press Enter to update the graph.
3. Zoom In on the Graph:
Use the zoom function in your graphing app (for example, two-finger swipe up or down on a Chromebook) to zoom in very close to the points where the graph crosses the [tex]\(x\)[/tex]-axis. These points are your [tex]\(x\)[/tex]-intercepts.
4. Estimate the [tex]\(x\)[/tex]-Intercepts:
Carefully estimate the points where the graph intersects the [tex]\(x\)[/tex]-axis. These points should be in the format [tex]\((x, 0)\)[/tex].
Based on the graph and a detailed inspection, the estimated [tex]\(x\)[/tex]-intercepts for the equation [tex]\(y = 3x^2 - 5x - 3\)[/tex] are approximately at:
[tex]\[ (2.1, 0) \quad \text{and} \quad (-0.5, 0) \][/tex]
So, the estimated [tex]\(x\)[/tex]-intercepts are at:
[tex]\[ \boxed{2.1}, \; \text{and} \boxed{-0.5} \][/tex]
1. Open the Graphing App:
Begin by opening your preferred graphing app or tool.
2. Input the Equation:
Type the equation into the graphing app exactly as:
[tex]\[ y = 3x^{\wedge}2 - 5x - 3 \][/tex]
Make sure to use the [tex]\(\wedge\)[/tex] key for exponents and to press Enter to update the graph.
3. Zoom In on the Graph:
Use the zoom function in your graphing app (for example, two-finger swipe up or down on a Chromebook) to zoom in very close to the points where the graph crosses the [tex]\(x\)[/tex]-axis. These points are your [tex]\(x\)[/tex]-intercepts.
4. Estimate the [tex]\(x\)[/tex]-Intercepts:
Carefully estimate the points where the graph intersects the [tex]\(x\)[/tex]-axis. These points should be in the format [tex]\((x, 0)\)[/tex].
Based on the graph and a detailed inspection, the estimated [tex]\(x\)[/tex]-intercepts for the equation [tex]\(y = 3x^2 - 5x - 3\)[/tex] are approximately at:
[tex]\[ (2.1, 0) \quad \text{and} \quad (-0.5, 0) \][/tex]
So, the estimated [tex]\(x\)[/tex]-intercepts are at:
[tex]\[ \boxed{2.1}, \; \text{and} \boxed{-0.5} \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.