Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine the quantity of heat released when 27.9 g of H2O condenses, we'll follow these steps:
1. Identify given data and constants:
- The enthalpy of vaporization ([tex]\(\Delta H_{\text{vap}}\)[/tex]) of water is 40.7 kJ/mol.
- The mass of water (H2O) is 27.9 g.
- The molar mass of water (H2O) is approximately 18.015 g/mol.
2. Calculate the number of moles of H2O:
Using the molar mass of H2O, we can convert the mass of water to moles. The formula to find the number of moles ([tex]\(n\)[/tex]) is:
[tex]\[ n = \frac{\text{mass}}{\text{molar mass}} \][/tex]
Substituting the given values:
[tex]\[ n = \frac{27.9 \text{ g}}{18.015 \text{ g/mol}} \approx 1.5487 \text{ mol} \][/tex]
3. Calculate the quantity of heat released:
The quantity of heat ([tex]\(q\)[/tex]) released when water condenses can be found using the formula:
[tex]\[ q = n \, \Delta H_{\text{vap}} \][/tex]
Substituting the values for [tex]\(n\)[/tex] and [tex]\(\Delta H_{\text{vap}}\)[/tex]:
[tex]\[ q = 1.5487 \text{ mol} \times 40.7 \text{ kJ/mol} \][/tex]
[tex]\[ q \approx 63.03 \text{ kJ} \][/tex]
Thus, the quantity of heat released when 27.9 g of H2O condenses is approximately [tex]\(63.03 \text{ kJ}\)[/tex].
Among the given options:
- [tex]\(60.00 \text{ kJ}\)[/tex]
- [tex]\(61.05 \text{ kJ}\)[/tex]
- [tex]\(63.09 \text{ kJ}\)[/tex]
- [tex]\(68.60 \text{ kJ}\)[/tex]
The closest option to our calculated value (63.03 kJ) is [tex]\(63.09 \text{ kJ}\)[/tex].
Therefore, the correct answer is [tex]\(63.09 \text{ kJ}\)[/tex].
1. Identify given data and constants:
- The enthalpy of vaporization ([tex]\(\Delta H_{\text{vap}}\)[/tex]) of water is 40.7 kJ/mol.
- The mass of water (H2O) is 27.9 g.
- The molar mass of water (H2O) is approximately 18.015 g/mol.
2. Calculate the number of moles of H2O:
Using the molar mass of H2O, we can convert the mass of water to moles. The formula to find the number of moles ([tex]\(n\)[/tex]) is:
[tex]\[ n = \frac{\text{mass}}{\text{molar mass}} \][/tex]
Substituting the given values:
[tex]\[ n = \frac{27.9 \text{ g}}{18.015 \text{ g/mol}} \approx 1.5487 \text{ mol} \][/tex]
3. Calculate the quantity of heat released:
The quantity of heat ([tex]\(q\)[/tex]) released when water condenses can be found using the formula:
[tex]\[ q = n \, \Delta H_{\text{vap}} \][/tex]
Substituting the values for [tex]\(n\)[/tex] and [tex]\(\Delta H_{\text{vap}}\)[/tex]:
[tex]\[ q = 1.5487 \text{ mol} \times 40.7 \text{ kJ/mol} \][/tex]
[tex]\[ q \approx 63.03 \text{ kJ} \][/tex]
Thus, the quantity of heat released when 27.9 g of H2O condenses is approximately [tex]\(63.03 \text{ kJ}\)[/tex].
Among the given options:
- [tex]\(60.00 \text{ kJ}\)[/tex]
- [tex]\(61.05 \text{ kJ}\)[/tex]
- [tex]\(63.09 \text{ kJ}\)[/tex]
- [tex]\(68.60 \text{ kJ}\)[/tex]
The closest option to our calculated value (63.03 kJ) is [tex]\(63.09 \text{ kJ}\)[/tex].
Therefore, the correct answer is [tex]\(63.09 \text{ kJ}\)[/tex].
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.